0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A systematic review of the association between fault or blame-related attributions and procedures after transport injury and health and work-related outcomes

      , , ,

      Accident Analysis & Prevention

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 93

          • Record: found
          • Abstract: found
          • Article: not found

          How Many Subjects Does It Take To Do A Regression Analysis.

           S Green (1991)
          Numerous rules-of-thumb have been suggested for determining the minimum number of subjects required to conduct multiple regression analyses. These rules-of-thumb are evaluated by comparing their results against those based on power analyses for tests of hypotheses of multiple and partial correlations. The results did not support the use of rules-of-thumb that simply specify some constant (e.g., 100 subjects) as the minimum number of subjects or a minimum ratio of number of subjects (N) to number of predictors (m). Some support was obtained for a rule-of-thumb that N ≥ 50 + 8 m for the multiple correlation and N ≥104 + m for the partial correlation. However, the rule-of-thumb for the multiple correlation yields values too large for N when m ≥ 7, and both rules-of-thumb assume all studies have a medium-size relationship between criterion and predictors. Accordingly, a slightly more complex rule-of thumb is introduced that estimates minimum sample size as function of effect size as well as the number of predictors. It is argued that researchers should use methods to determine sample size that incorporate effect size.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables.

            This article is the first of a series providing guidance for use of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system of rating quality of evidence and grading strength of recommendations in systematic reviews, health technology assessments (HTAs), and clinical practice guidelines addressing alternative management options. The GRADE process begins with asking an explicit question, including specification of all important outcomes. After the evidence is collected and summarized, GRADE provides explicit criteria for rating the quality of evidence that include study design, risk of bias, imprecision, inconsistency, indirectness, and magnitude of effect. Recommendations are characterized as strong or weak (alternative terms conditional or discretionary) according to the quality of the supporting evidence and the balance between desirable and undesirable consequences of the alternative management options. GRADE suggests summarizing evidence in succinct, transparent, and informative summary of findings tables that show the quality of evidence and the magnitude of relative and absolute effects for each important outcome and/or as evidence profiles that provide, in addition, detailed information about the reason for the quality of evidence rating. Subsequent articles in this series will address GRADE's approach to formulating questions, assessing quality of evidence, and developing recommendations. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

              Much of biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
                Bookmark

                Author and article information

                Journal
                Accident Analysis & Prevention
                Accident Analysis & Prevention
                Elsevier BV
                00014575
                February 2020
                February 2020
                : 135
                : 105333
                Article
                10.1016/j.aap.2019.105333
                © 2020

                Comments

                Comment on this article