0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Central Sensitization-Related Changes in Brain Function Activity in a Rat Endometriosis-Associated Pain Model

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pain sensitization processing in the central nervous system may be related to endometriosis-associated pain in patients. The purpose of this study was to understand the alterations in the abnormal pain response in central brain areas and explore the central sensitization mechanism of endometriosis-associated pain.

          Methods

          An endometriosis model was established in 40 Sprague-Dawley rats, and the rats underwent pain model assessment through behavioral tests. Twenty Sprague-Dawley rats underwent a sham operation as the control group. Thirteen pain rats and 8 control rats received Rs-fMRI examination to explore the brain functional activity areas, and the regional homogeneity (ReHo) method was used to analyze relevant functional signals among the whole brain. The states of neurons and expression of TRPV1 and NMDRA located in the abnormal ReHo signal brain regions were observed using Nissl staining, qRT-PCR and immunohistochemistry.

          Results

          The rats were divided into a pain group and a control group based on the different syndromes and behavioral assessments. We detected significant enhancement of ReHo signals in the anterior cingulate cortex, hippocampus, and thalamus and a reduction in the ReHo values in the basomedial amygdaloid nucleus (BM) and primary motor cortex (M1) in the pain rat group via Rs-fMRI examination. The number of Nissl bodies and apoptotic neurons was increased; moreover, the volume of neurons increased compensatorily in the cingulate cortex, thalamus and hippocampus in the pain group. TRPV1 and NMDRA were overexpressed in apoptotic neurons in the higher ReHo value brain regions in the endometriosis pain group.

          Conclusion

          These findings suggest that in rats with endometriosis-associated pain, ReHo signal enhancement was observed in the cingulate cortex, thalamus and hippocampus, which may be due to the increase in the number of apoptotic neurons or the compensatory increase in the volume of overactive neurons.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: found
          • Article: not found

          Central mechanisms of pathological pain.

           Rohini Kuner (2010)
          Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular function and network activity. Recent work has yielded a better understanding of communication within the neural matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their relevance to the development of new therapeutic approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory.

            Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Investigating neural primacy in Major Depressive Disorder: Multivariate granger causality analysis of resting-state fMRI time-series data

              Major Depressive Disorder (MDD) has been conceptualized as a neural network-level disease. Few studies of the neural bases of depression, however, have used analytic techniques that are capable of testing network-level hypotheses of neural dysfunction in this disorder. Moreover, of those that have, fewer still have attempted to determine directionality of influence within functionally abnormal networks of structures. We used multivariate Granger causality analysis — a technique that estimates the extent to which preceding neural activity in one or more seed regions predicts subsequent activity in target brain regions — to analyze blood-oxygen-level dependent (BOLD) data collected during eyes-closed rest in depressed and never-depressed persons. We found that activation in the hippocampus predicted subsequent increases in ventral anterior cingulate cortex (vACC) activity in depression, and that activity in medial prefrontal cortex and vACC were mutually reinforcing in MDD. Hippocampal and vACC activation in depressed participants predicted subsequent decreases in dorsal cortical activity. This study shows that, on a moment-by-moment basis, there is increased excitatory activity among limbic and paralimbic structures, as well as increased inhibition in activity of dorsal cortical structures, by limbic structures in depression; these aberrant patterns of effective connectivity implicate disturbances in the mesostriatal dopamine system in depression. These findings advance neural theory of depression by detailing specific patterns of limbic excitation in MDD, by making explicit the primary role of limbic inhibition of dorsal cortex in the cortico-limbic relation posited to underlie depression, and by presenting an integrated neurofunctional account of altered dopamine function in this disorder.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                JPR
                jpainres
                Journal of Pain Research
                Dove
                1178-7090
                13 January 2020
                2020
                : 13
                : 95-107
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing, People’s Republic of China
                [2 ]Air Force Medical Center, PLA , Beijing, People’s Republic of China
                [3 ]Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100193, People’s Republic of China
                Author notes
                Correspondence: Jinghe Lang Email langjh@hotmail.com
                Jinhua Leng Email lengjenny@vip.sina.com
                Article
                232313
                10.2147/JPR.S232313
                6968808
                © 2020 Zheng et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 8, Tables: 5, References: 48, Pages: 13
                Categories
                Original Research

                Comments

                Comment on this article