5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pigeons as Carriers of Clinically Relevant Multidrug-Resistant Pathogens—A Clinical Case Report and Literature Review

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pigeons are widespread bird species in urban regions ( Columba livia forma urbana) and may carry pathogens with zoonotic potential. In recent years, more and more data indicate that these zoonotic pathogens are multidrug resistant. Our results confirmed that global trend. Three different multidrug-resistant pathogens were isolated from an oral cavity of a racing pigeon with lesions typical for pigeon pox virus infection. Staphylococcus aureus was recognized as methicillin resistant, thus resistant to all beta-lactams. Additionally, it was also resistant to many other classes of antibiotics, namely: aminoglycosides, tetracyclines, phenicols, lincosamides, and macrolides. Escherichia coli showed resistance to all antimicrobials tested, and it was classified as intermediate to amikacin. Moreover, Candida albicans resistant to clotrimazole, natamycin, flucytosine, and amphotericin and intermediate to ketoconazole, nystatin, and econazole was also isolated. This raises the question how pigeons acquire such highly resistant strains. Therefore, more data are needed concerning the resistance to antibiotics in strains from domestic and wild pigeons in Poland. Until the problem is fully understood, it will be challenging to implement adequate planning of any control measures and check their effectiveness.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

          Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The One Health Concept: 10 Years Old and a Long Road Ahead

            Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human–animal–ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the “One Health” concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the “One Health” concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiplex-PCR method for species identification of coagulase-positive staphylococci.

              In veterinary medicine, coagulase-positive staphylococci (CoPS) other than Staphylococcus aureus have frequently been misidentified as being S. aureus strains, as they have several phenotypic traits in common. There has been no reliable method to distinguish among CoPS species in veterinary clinical laboratories. In the present study, we sequenced the thermonuclease (nuc) genes of staphylococcal species and devised a multiplex-PCR (M-PCR) method for species identification of CoPS by targeting the nuc gene locus. To evaluate sensitivity and specificity, we used this M-PCR method on 374 staphylococcal strains that had been previously identified to the species level by an hsp60 sequencing approach. We could successfully distinguish between S. aureus, S. hyicus, S. schleiferi, S. intermedius, S. pseudintermedius, and S. delphini groups A and B. The present method was both sensitive (99.8%) and specific (100%). Our M-PCR assay will allow the routine species identification of CoPS isolates from various animal species for clinical veterinary diagnosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                24 May 2021
                2021
                : 8
                : 664226
                Affiliations
                [1] 1Department of Preclinical Sciences , Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
                [2] 2Department of Pathology and Veterinary Diagnostics , Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
                [3] 3Department of Infectious Diseases and Preventive Medicine , Law and Ethics, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
                Author notes

                Edited by: Camilla Luzzago, University of Milan, Italy

                Reviewed by: Lucinda Janete Bessa, LAQV Network of Chemistry and Technology, Portugal; Clarissa Araujo Borges, University of California, Berkeley, United States

                *Correspondence: Dorota Chrobak-Chmiel dorota_chrobak@ 123456sggw.edu.pl

                This article was submitted to Veterinary Infectious Diseases, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2021.664226
                8180574
                34109235
                a534d911-3c85-49d9-b170-8d506b7418eb
                Copyright © 2021 Chrobak-Chmiel, Kwiecień, Golke, Dolka, Adamczyk, Biegańska, Spinu, Binek and Rzewuska.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 February 2021
                : 09 April 2021
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 42, Pages: 6, Words: 4113
                Categories
                Veterinary Science
                Brief Research Report

                antimicrobial resistance,candida albicans,escherichia coli,mrsa,pigeon

                Comments

                Comment on this article