83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Key Applications of Plant Metabolic Engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elizabeth Sattely, Anne Osbourn, and colleagues discuss in this Essay four long-standing challenges in plant metabolic engineering: to create plants that provide their own nitrogen, have improved nutrient content, function better as biofuels, and have increased photosynthetic efficiency.

          Abstract

          Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pivoting the plant immune system from dissection to deployment.

            Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease resistance beyond the limits imposed by conventional breeding and in a manner that will replace costly and unsustainable chemical controls.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathways for degradation of lignin in bacteria and fungi.

              Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                June 2014
                10 June 2014
                : 12
                : 6
                : e1001879
                Affiliations
                [1 ]Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
                [2 ]Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
                [3 ]Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich United Kingdom
                The Sainsbury Laboratory, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Article
                PBIOLOGY-D-14-00804
                10.1371/journal.pbio.1001879
                4051588
                24915445
                a536cf7a-9765-4527-b2ee-8bc2f59ba248
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Pages: 5
                Funding
                ESS is supported by NIH grants GM089985 and OD007290 and by startup funds from Stanford University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Essay
                Biology and Life Sciences
                Biochemistry
                Plant Biochemistry
                Photosynthesis
                Phytochemicals
                Plant Energy Production
                Biotechnology
                Bioengineering
                Biological Systems Engineering
                Plant Biotechnology
                Small Molecules
                Nutrition
                Diet
                Plant Science
                Engineering and Technology
                Chemical Engineering

                Life sciences
                Life sciences

                Comments

                Comment on this article