15
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effect of GLP-1 analog liraglutide on podocytes in mice with diabetic nephropathy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protection of podocytes is one of the important means to delay the progression of diabetic nephropathy (DN), and glucagon-like peptide-1 (GLP-1) has been shown to have a protective effect on the kidney in DN models, but whether it has a protective effect on podocytes and the potential mechanisms of action remain largely unknown. In the present study, we established a type 2 diabetes mellitus (T2DM) mouse model by high-fat diet feeding combined with streptozotocin (STZ) induction and administered the intervention for 14 weeks. We found that liraglutide significantly ameliorated podocyte injury in DN mice. Mechanistically, we detected glucagon-like peptide-1 receptor (GLP-1R) protein expression levels in kidney tissues by immunohistochemical staining, immunofluorescence staining, and western blotting and found that podocytes could express GLP-1R and liraglutide treatment could restore GLP-1R expression in the kidney tissues of DN mice. Furthermore, we found that NLRP3-induced inflammation and pyroptosis were positively correlated with podocyte injury in DN mice, and liraglutide inhibited the expression of NLRP3-induced inflammation and pyroptosis-related proteins. Our results suggest that liraglutide protects DN mouse podocytes by regulating GLP-1R in renal tissues and by regulating NLRP3-induced inflammation and pyroptosis.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045

          To provide global, regional, and country-level estimates of diabetes prevalence and health expenditures for 2021 and projections for 2045.
            • Record: found
            • Abstract: found
            • Article: not found

            The NLRP3 inflammasome: molecular activation and regulation to therapeutics

            NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis

              Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                28 August 2023
                31 July 2023
                01 October 2023
                : 12
                : 10
                : e230284
                Affiliations
                [1 ]Division of Nephrology , The First Affiliated Hospital of Yangtze University, Jingzhou, China
                [2 ]Division of Nephrology , Renmin Hospital of Wuhan University, Wuhan, China
                [3 ]Department of Immunology , School of Medicine, Yangtze University, Jingzhou, China
                Author notes
                Correspondence should be addressed to T Ma: matean@ 123456yangtzeu.edu.cn
                Author information
                http://orcid.org/0009-0000-7226-3537
                http://orcid.org/0009-0004-6949-9126
                Article
                EC-23-0284
                10.1530/EC-23-0284
                10503227
                37522848
                a54cf9b4-eb58-4fa3-ae9c-c730276855ec
                © the author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 13 July 2023
                : 28 August 2023
                Categories
                Research

                liraglutide,diabetic nephropathy,podocytes,glucagon-like peptide-1 receptor,pyroptosis

                Comments

                Comment on this article

                Related Documents Log