3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MEST induces Twist-1-mediated EMT through STAT3 activation in breast cancers

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">The loss of imprinting of MEST has been linked to certain types of cancer by promoter switching. However, MEST-mediated regulation of tumorigenicity and metastasis are yet to be understood. Herein, we reported that MEST is a key regulator of IL-6/JAK/STAT3/Twist-1 signal pathway-mediated tumor metastasis. Enhanced MEST expression is significantly associated with pathogenesis of breast cancer patients. Also, MEST induces metastatic potential of breast cancer through induction of the EMT-TFs-mediated EMT program. Moreover, MEST leads to Twist-1 induction by STAT3 activation and subsequently enables the induction of activation of the EMT program via the induction of STAT3 nuclear translocation. Furthermore, the c-terminal region of MEST was essential for STAT3 activation via the induction of JAK2/STAT3 complex formation. Finally, MEST is required for metastasis in an experimental metastasis model. These observations suggest that MEST is a promising target for intervention to prevent tumor metastasis. </p>

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.

            Tumorigenic breast cancer cells that express high levels of CD44 and low or undetectable levels of CD24 (CD44(>)/CD24(>/low)) may be resistant to chemotherapy and therefore responsible for cancer relapse. These tumorigenic cancer cells can be isolated from breast cancer biopsies and propagated as mammospheres in vitro. In this study, we aimed to test directly in human breast cancers the effect of conventional chemotherapy or lapatinib (an epidermal growth factor receptor [EGFR]/HER2 pathway inhibitor) on this tumorigenic CD44(>) and CD24(>/low) cell population. Paired breast cancer core biopsies were obtained from patients with primary breast cancer before and after 12 weeks of treatment with neoadjuvant chemotherapy (n = 31) or, for patients with HER2-positive tumors, before and after 6 weeks of treatment with the EGFR/HER2 inhibitor lapatinib (n = 21). Single-cell suspensions established from these biopsies were stained with antibodies against CD24, CD44, and lineage markers and analyzed by flow cytometry. The potential of cells from biopsy samples taken before and after treatment to form mammospheres in culture was compared. All statistical tests were two-sided. Chemotherapy treatment increased the percentage of CD44(>)/CD24(>/low) cells (mean at baseline vs 12 weeks, 4.7%, 95% confidence interval [CI] = 3.5% to 5.9%, vs 13.6%, 95% CI = 10.9% to 16.3%; P )/CD24(>/low) cells (mean at baseline vs 6 weeks, 10.0%, 95% CI = 7.2% to 12.8%, vs 7.5%, 95% CI = 4.1% to 10.9%) and a statistically non-significant decrease in MSFE (mean at baseline vs 6 weeks, 16.1%, 95% CI = 8.7% to 23.5%, vs 10.8%, 95% CI = 4.0% to 17.6%). These studies provide clinical evidence for a subpopulation of chemotherapy-resistant breast cancer-initiating cells. Lapatinib did not lead to an increase in these tumorigenic cells, and, in combination with conventional therapy, specific pathway inhibitors may provide a therapeutic strategy for eliminating these cells to decrease recurrence and improve long-term survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors.

              Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24- cells that have stem cell-like characteristics, and CD44-CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24- human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24- breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.
                Bookmark

                Author and article information

                Journal
                Cell Death & Differentiation
                Cell Death Differ
                Springer Nature
                1350-9047
                1476-5403
                March 22 2019
                Article
                10.1038/s41418-019-0322-9
                7224286
                30903102
                a55fea41-51ea-414e-a2db-38d5564df655
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article