48
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deep learning based detection and analysis of COVID-19 on chest X-ray images

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Covid-19 is a rapidly spreading viral disease that infects not only humans, but animals are also infected because of this disease. The daily life of human beings, their health, and the economy of a country are affected due to this deadly viral disease. Covid-19 is a common spreading disease, and till now, not a single country can prepare a vaccine for COVID-19. A clinical study of COVID-19 infected patients has shown that these types of patients are mostly infected from a lung infection after coming in contact with this disease. Chest x-ray (i.e., radiography) and chest CT are a more effective imaging technique for diagnosing lunge related problems. Still, a substantial chest x-ray is a lower cost process in comparison to chest CT. Deep learning is the most successful technique of machine learning, which provides useful analysis to study a large amount of chest x-ray images that can critically impact on screening of Covid-19. In this work, we have taken the PA view of chest x-ray scans for covid-19 affected patients as well as healthy patients. After cleaning up the images and applying data augmentation, we have used deep learning-based CNN models and compared their performance. We have compared Inception V3, Xception, and ResNeXt models and examined their accuracy. To analyze the model performance, 6432 chest x-ray scans samples have been collected from the Kaggle repository, out of which 5467 were used for training and 965 for validation. In result analysis, the Xception model gives the highest accuracy (i.e., 97.97%) for detecting Chest X-rays images as compared to other models. This work only focuses on possible methods of classifying covid-19 infected patients and does not claim any medical accuracy.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study

            Summary Background A cluster of patients with coronavirus disease 2019 (COVID-19) pneumonia caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were successively reported in Wuhan, China. We aimed to describe the CT findings across different timepoints throughout the disease course. Methods Patients with COVID-19 pneumonia (confirmed by next-generation sequencing or RT-PCR) who were admitted to one of two hospitals in Wuhan and who underwent serial chest CT scans were retrospectively enrolled. Patients were grouped on the basis of the interval between symptom onset and the first CT scan: group 1 (subclinical patients; scans done before symptom onset), group 2 (scans done ≤1 week after symptom onset), group 3 (>1 week to 2 weeks), and group 4 (>2 weeks to 3 weeks). Imaging features and their distribution were analysed and compared across the four groups. Findings 81 patients admitted to hospital between Dec 20, 2019, and Jan 23, 2020, were retrospectively enrolled. The cohort included 42 (52%) men and 39 (48%) women, and the mean age was 49·5 years (SD 11·0). The mean number of involved lung segments was 10·5 (SD 6·4) overall, 2·8 (3·3) in group 1, 11·1 (5·4) in group 2, 13·0 (5·7) in group 3, and 12·1 (5·9) in group 4. The predominant pattern of abnormality observed was bilateral (64 [79%] patients), peripheral (44 [54%]), ill-defined (66 [81%]), and ground-glass opacification (53 [65%]), mainly involving the right lower lobes (225 [27%] of 849 affected segments). In group 1 (n=15), the predominant pattern was unilateral (nine [60%]) and multifocal (eight [53%]) ground-glass opacities (14 [93%]). Lesions quickly evolved to bilateral (19 [90%]), diffuse (11 [52%]) ground-glass opacity predominance (17 [81%]) in group 2 (n=21). Thereafter, the prevalence of ground-glass opacities continued to decrease (17 [57%] of 30 patients in group 3, and five [33%] of 15 in group 4), and consolidation and mixed patterns became more frequent (12 [40%] in group 3, eight [53%] in group 4). Interpretation COVID-19 pneumonia manifests with chest CT imaging abnormalities, even in asymptomatic patients, with rapid evolution from focal unilateral to diffuse bilateral ground-glass opacities that progressed to or co-existed with consolidations within 1–3 weeks. Combining assessment of imaging features with clinical and laboratory findings could facilitate early diagnosis of COVID-19 pneumonia. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

              In this retrospective case series, chest CT scans of 21 symptomatic patients from China infected with the 2019 novel coronavirus (2019-nCoV) were reviewed, with emphasis on identifying and characterizing the most common findings. Typical CT findings included bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes with a rounded morphology and a peripheral lung distribution. Notably, lung cavitation, discrete pulmonary nodules, pleural effusions, and lymphadenopathy were absent. Follow-up imaging in a subset of patients during the study time window often demonstrated mild or moderate progression of disease, as manifested by increasing extent and density of lung opacities. © RSNA, 2020
                Bookmark

                Author and article information

                Contributors
                judehemanth@karunya.edu
                Journal
                Appl Intell
                Applied Intelligence
                Springer US (New York )
                0924-669X
                1573-7497
                9 October 2020
                : 1-11
                Affiliations
                [1 ]GRID grid.411685.f, ISNI 0000 0004 0498 1133, Department of CSE, , Bharati Vidyapeeth’s College of Engineering, ; Delhi, India
                [2 ]GRID grid.448792.4, ISNI 0000 0004 4678 9721, Department of CSE, , Chandigarh University, ; Punjab, India
                [3 ]GRID grid.412056.4, ISNI 0000 0000 9896 4772, Department of ECE, , Karunya Institute of Technology and Sciences, ; Coimbatore, India
                Author information
                http://orcid.org/0000-0002-6091-1880
                Article
                1902
                10.1007/s10489-020-01902-1
                7544769
                34764553
                a5695bcb-d3a7-4035-a712-c2c9e84244fe
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article

                covid-19,xception,inception net 3,deep-learning,resnext,chest x-ray images,cnn

                Comments

                Comment on this article