69
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glyptosternoid fishes (Siluriformes), one of the three broad fish lineages (the two other are schizothoracines and Triplophysa), have a limited distribution in the rivers in the Tibetan Plateau and peripheral regions. To investigate the genetic mechanisms underlying adaptation to the Tibetan Plateau in several fish species from gradient altitudes, a total of 20,659,183–37,166,756 sequence reads from six species of catfish were generated by Illumina sequencing, resulting in six assemblies. Analysis of the 1,656 orthologs among the six assembled catfish unigene sets provided consistent evidence for genome-wide accelerated evolution in the three glyptosternoid lineages living at high altitudes. A large number of genes refer to functional categories related to hypoxia and energy metabolism exhibited rapid evolution in the glyptosternoid lineages relative to yellowhead catfish living in plains areas. Genes showing signatures of rapid evolution and positive selection in the glyptosternoid lineages were also enriched in functions associated with energy metabolism and hypoxia. Our analyses provide novel insights into highland adaptation in fishes and can serve as a foundation for future studies aiming to identify candidate genes underlying the genetic basis of adaptation in Tibetan fishes.

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The genomic basis of adaptive evolution in threespine sticklebacks

          Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomic signature of dog domestication reveals adaptation to a starch-rich diet.

            The domestication of dogs was an important episode in the development of human civilization. The precise timing and location of this event is debated and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencing of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication. Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              De novo assembly and analysis of RNA-seq data.

              We describe Trans-ABySS, a de novo short-read transcriptome assembly and analysis pipeline that addresses variation in local read densities by assembling read substrings with varying stringencies and then merging the resulting contigs before analysis. Analyzing 7.4 gigabases of 50-base-pair paired-end Illumina reads from an adult mouse liver poly(A) RNA library, we identified known, new and alternative structures in expressed transcripts, and achieved high sensitivity and specificity relative to reference-based assembly methods.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                10 November 2015
                January 2016
                : 6
                : 1
                : 141-148
                Affiliations
                [* ]The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
                []School of Life Science, Southwest University, Beibei, Chongqing, 400715, China
                []Institute of Hydrobiology, University of Chinese Academy of Sciences, Beijing, 10001, China
                Author notes
                [1 ]Corresponding author: Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. E-mail: clad@ 123456ihb.ac.cn
                Article
                GGG_024448
                10.1534/g3.115.024448
                4704712
                26564948
                a57362da-8979-4561-b136-45c29fb89752
                Copyright © 2016 Ma et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 October 2015
                : 05 November 2015
                Page count
                Pages: 8
                Categories
                Investigations

                Genetics
                tibetan plateau,adaption,gradient altitudes,comprehensive transcriptome,glyptosternoid fishes,accelerated genic evolution

                Comments

                Comment on this article