19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large‐scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 ( n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low‐ and high‐affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected – both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H 2, now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large‐scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Consed: a graphical tool for sequence finishing.

          Sequencing of large clones or small genomes is generally done by the shotgun approach (Anderson et al. 1982). This has two phases: (1) a shotgun phase in which a number of reads are generated from random subclones and assembled into contigs, followed by (2) a directed, or finishing phase in which the assembly is inspected for correctness and for various kinds of data anomalies (such as contaminant reads, unremoved vector sequence, and chimeric or deleted reads), additional data are collected to close gaps and resolve low quality regions, and editing is performed to correct assembly or base-calling errors. Finishing is currently a bottleneck in large-scale sequencing efforts, and throughput gains will depend both on reducing the need for human intervention and making it as efficient as possible. We have developed a finishing tool, consed, which attempts to implement these principles. A distinguishing feature relative to other programs is the use of error probabilities from our programs phred and phrap as an objective criterion to guide the entire finishing process. More information is available at http:// www.genome.washington.edu/consed/consed. html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell biology and molecular basis of denitrification.

            W Zumft (1997)
            Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes.

                Bookmark

                Author and article information

                Contributors
                eichorst@microbial-ecology.net
                Journal
                Environ Microbiol
                Environ. Microbiol
                10.1111/(ISSN)1462-2920
                EMI
                Environmental Microbiology
                John Wiley and Sons Inc. (Hoboken )
                1462-2912
                1462-2920
                12 March 2018
                March 2018
                : 20
                : 3 ( doiID: 10.1111/emi.2018.20.issue-3 )
                : 1041-1063
                Affiliations
                [ 1 ] Division of Microbial Ecology, Department of Microbiology and Ecosystem Science Research Network “Chemistry Meets Biology”, University of Vienna Vienna Austria
                [ 2 ] Department of Energy Joint Genome Institute Walnut Creek CA USA
                [ 3 ] Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science Research Network “Chemistry Meets Biology”, University of Vienna Vienna Austria
                Author notes
                [*] [* ]For correspondence. E‐mail: eichorst@ 123456microbial-ecology.net ; Tel. +43 1 4277 76610; Fax +43 1 4277 876613.
                [†]

                These authors contributed equally to the work.

                Author information
                http://orcid.org/0000-0002-9017-7461
                http://orcid.org/0000-0001-6748-5311
                http://orcid.org/0000-0002-5831-5895
                http://orcid.org/0000-0003-3479-0197
                http://orcid.org/0000-0002-0592-7791
                http://orcid.org/0000-0002-1314-9926
                Article
                EMI14043
                10.1111/1462-2920.14043
                5900883
                29327410
                a5742034-757b-4d83-8bfb-e14cf457a5ed
                © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 May 2017
                : 16 December 2017
                : 08 January 2018
                Page count
                Figures: 5, Tables: 2, Pages: 23, Words: 16235
                Funding
                Funded by: Austrian Science Fund
                Award ID: P26392‐B20
                Funded by: Joint Genome Institute Community Sequencing Program
                Award ID: 386
                Funded by: U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility
                Award ID: DE‐AC02–05CH11231
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                emi14043
                March 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.4 mode:remove_FC converted:16.04.2018

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article