36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A multicentre, randomised controlled, non-inferiority trial, comparing high flow therapy with nasal continuous positive airway pressure as primary support for preterm infants with respiratory distress (the HIPSTER trial): study protocol

      protocol

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          High flow (HF) therapy is an increasingly popular mode of non-invasive respiratory support for preterm infants. While there is now evidence to support the use of HF to reduce extubation failure, there have been no appropriately designed and powered studies to assess the use of HF as primary respiratory support soon after birth. Our hypothesis is that HF is non-inferior to the standard treatment—nasal continuous positive airway pressure (NCPAP)— as primary respiratory support for preterm infants.

          Methods and analysis

          The HIPSTER trial is an unblinded, international, multicentre, randomised, non-inferiority trial. Eligible infants are preterm infants of 28–36 +6 weeks’ gestational age (GA) who require primary non-invasive respiratory support for respiratory distress in the first 24 h of life. Infants are randomised to treatment with either HF or NCPAP. The primary outcome is treatment failure within 72 h after randomisation, as determined by objective oxygenation, blood gas, and apnoea criteria, or the need for urgent intubation and mechanical ventilation. Secondary outcomes include the incidence of intubation, pneumothorax, bronchopulmonary dysplasia, nasal trauma, costs associated with hospital care and parental stress. With a specified non-inferiority margin of 10%, using a two-sided 95% CI and 90% power, the study requires 375 infants per group (total 750 infants).

          Ethics and dissemination

          Ethical approval has been granted by the relevant human research ethics committees at The Royal Women's Hospital (13/12), The Royal Children's Hospital (33144A), The Mercy Hospital for Women (R13/34), and the South-Eastern Norway Regional Health Authority (2013/1657). The trial is currently recruiting at 9 centres in Australia and Norway. The trial results will be published in peer-reviewed international journals, and presented at national and international conferences.

          Trial registration number

          Australian New Zealand Clinical Trials Registry ID: ACTRN12613000303741.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Early CPAP versus surfactant in extremely preterm infants.

          There are limited data to inform the choice between early treatment with continuous positive airway pressure (CPAP) and early surfactant treatment as the initial support for extremely-low-birth-weight infants. We performed a randomized, multicenter trial, with a 2-by-2 factorial design, involving infants who were born between 24 weeks 0 days and 27 weeks 6 days of gestation. Infants were randomly assigned to intubation and surfactant treatment (within 1 hour after birth) or to CPAP treatment initiated in the delivery room, with subsequent use of a protocol-driven limited ventilation strategy. Infants were also randomly assigned to one of two target ranges of oxygen saturation. The primary outcome was death or bronchopulmonary dysplasia as defined by the requirement for supplemental oxygen at 36 weeks (with an attempt at withdrawal of supplemental oxygen in neonates who were receiving less than 30% oxygen). A total of 1316 infants were enrolled in the study. The rates of the primary outcome did not differ significantly between the CPAP group and the surfactant group (47.8% and 51.0%, respectively; relative risk with CPAP, 0.95; 95% confidence interval [CI], 0.85 to 1.05) after adjustment for gestational age, center, and familial clustering. The results were similar when bronchopulmonary dysplasia was defined according to the need for any supplemental oxygen at 36 weeks (rates of primary outcome, 48.7% and 54.1%, respectively; relative risk with CPAP, 0.91; 95% CI, 0.83 to 1.01). Infants who received CPAP treatment, as compared with infants who received surfactant treatment, less frequently required intubation or postnatal corticosteroids for bronchopulmonary dysplasia (P<0.001), required fewer days of mechanical ventilation (P=0.03), and were more likely to be alive and free from the need for mechanical ventilation by day 7 (P=0.01). The rates of other adverse neonatal outcomes did not differ significantly between the two groups. The results of this study support consideration of CPAP as an alternative to intubation and surfactant in preterm infants. (ClinicalTrials.gov number, NCT00233324.) 2010 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caffeine therapy for apnea of prematurity.

            Methylxanthines reduce the frequency of apnea of prematurity and the need for mechanical ventilation during the first seven days of therapy. It is uncertain whether methylxanthines have other short- and long-term benefits or risks in infants with very low birth weight. We randomly assigned 2006 infants with birth weights of 500 to 1250 g during the first 10 days of life to receive either caffeine or placebo, until drug therapy for apnea of prematurity was no longer needed. We evaluated the short-term outcomes before the first discharge home. Of 963 infants who were assigned to caffeine and who remained alive at a postmenstrual age of 36 weeks, 350 (36 percent) received supplemental oxygen, as did 447 of the 954 infants (47 percent) assigned to placebo (adjusted odds ratio, 0.63; 95 percent confidence interval, 0.52 to 0.76; P<0.001). Positive airway pressure was discontinued one week earlier in the infants assigned to caffeine (median postmenstrual age, 31.0 weeks; interquartile range, 29.4 to 33.0) than in the infants in the placebo group (median postmenstrual age, 32.0 weeks; interquartile range, 30.3 to 34.0; P<0.001). Caffeine reduced weight gain temporarily. The mean difference in weight gain between the group receiving caffeine and the group receiving placebo was greatest after two weeks (mean difference, -23 g; 95 percent confidence interval, -32 to -13; P<0.001). The rates of death, ultrasonographic signs of brain injury, and necrotizing enterocolitis did not differ significantly between the two groups. Caffeine therapy for apnea of prematurity reduces the rate of bronchopulmonary dysplasia in infants with very low birth weight. (ClinicalTrials.gov number, NCT00182312.). Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nasal CPAP or intubation at birth for very preterm infants.

              Bronchopulmonary dysplasia is associated with ventilation and oxygen treatment. This randomized trial investigated whether nasal continuous positive airway pressure (CPAP), rather than intubation and ventilation, shortly after birth would reduce the rate of death or bronchopulmonary dysplasia in very preterm infants. We randomly assigned 610 infants who were born at 25-to-28-weeks' gestation to CPAP or intubation and ventilation at 5 minutes after birth. We assessed outcomes at 28 days of age, at 36 weeks' gestational age, and before discharge. At 36 weeks' gestational age, 33.9% of 307 infants who were assigned to receive CPAP had died or had bronchopulmonary dysplasia, as compared with 38.9% of 303 infants who were assigned to receive intubation (odds ratio favoring CPAP, 0.80; 95% confidence interval [CI], 0.58 to 1.12; P=0.19). At 28 days, there was a lower risk of death or need for oxygen therapy in the CPAP group than in the intubation group (odds ratio, 0.63; 95% CI, 0.46 to 0.88; P=0.006). There was little difference in overall mortality. In the CPAP group, 46% of infants were intubated during the first 5 days, and the use of surfactant was halved. The incidence of pneumothorax was 9% in the CPAP group, as compared with 3% in the intubation group (P<0.001). There were no other serious adverse events. The CPAP group had fewer days of ventilation. In infants born at 25-to-28-weeks' gestation, early nasal CPAP did not significantly reduce the rate of death or bronchopulmonary dysplasia, as compared with intubation. Even though the CPAP group had more incidences of pneumothorax, fewer infants received oxygen at 28 days, and they had fewer days of ventilation. (Australian New Zealand Clinical Trials Registry number, 12606000258550.). Copyright 2008 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                BMJ Open
                BMJ Open
                bmjopen
                bmjopen
                BMJ Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2044-6055
                2015
                24 June 2015
                : 5
                : 6
                : e008483
                Affiliations
                [1 ]The Royal Women's Hospital , Melbourne, Australia
                [2 ]Department of Obstetrics and Gynaecology, The University of Melbourne , Melbourne, Australia
                [3 ]Murdoch Children's Research Institute , Melbourne, Australia
                [4 ]Department of Paediatrics, The University of Melbourne , Melbourne, Australia
                Author notes
                [Correspondence to ] Dr Calum T Roberts; calum.roberts@ 123456thewomens.org.au
                Article
                bmjopen-2015-008483
                10.1136/bmjopen-2015-008483
                4479999
                26109120
                a57c010e-8167-4320-9528-269380f14357
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 14 April 2015
                : 13 May 2015
                Categories
                Paediatrics
                Protocol
                1506
                1719
                1731
                1707

                Medicine
                neonatology
                Medicine
                neonatology

                Comments

                Comment on this article