6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse

      , , ,
      Acta Physiologica
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          TRP channels as cellular sensors.

          TRP channels are the vanguard of our sensory systems, responding to temperature, touch, pain, osmolarity, pheromones, taste and other stimuli. But their role is much broader than classical sensory transduction. They are an ancient sensory apparatus for the cell, not just the multicellular organism, and they have been adapted to respond to all manner of stimuli, from both within and outside the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function.

            Major features of the transcellular signaling mechanism responsible for endothelium-dependent regulation of vascular smooth muscle tone are unresolved. We identified local calcium (Ca(2+)) signals ("sparklets") in the vascular endothelium of resistance arteries that represent Ca(2+) influx through single TRPV4 cation channels. Gating of individual TRPV4 channels within a four-channel cluster was cooperative, with activation of as few as three channels per cell causing maximal dilation through activation of endothelial cell intermediate (IK)- and small (SK)-conductance, Ca(2+)-sensitive potassium (K(+)) channels. Endothelial-dependent muscarinic receptor signaling also acted largely through TRPV4 sparklet-mediated stimulation of IK and SK channels to promote vasodilation. These results support the concept that Ca(2+) influx through single TRPV4 channels is leveraged by the amplifier effect of cooperative channel gating and the high Ca(2+) sensitivity of IK and SK channels to cause vasodilation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation.

              Ca2+-influx through transient receptor potential (TRP) channels was proposed to be important in endothelial function, although the precise role of specific TRP channels is unknown. Here, we investigated the role of the putatively mechanosensitive TRPV4 channel in the mechanisms of endothelium-dependent vasodilatation. Expression and function of TRPV4 was investigated in rat carotid artery endothelial cells (RCAECs) by using in situ patch-clamp techniques, single-cell RT-PCR, Ca2+ measurements, and pressure myography in carotid artery (CA) and Arteria gracilis. In RCAECs in situ, TRPV4 currents were activated by the selective TRPV4 opener 4alpha-phorbol-12,13-didecanoate (4alphaPDD), arachidonic acid, moderate warmth, and mechanically by hypotonic cell swelling. Single-cell RT-PCR in endothelial cells demonstrated mRNA expression of TRPV4. In FURA-2 Ca2+ measurements, 4alphaPDD increased [Ca2+]i by &140 nmol/L above basal levels. In pressure myograph experiments in CAs and A gracilis, 4alphaPDD caused robust endothelium-dependent and strictly endothelium-dependent vasodilatations by &80% (K(D) 0.3 microL), which were suppressed by the TRPV4 blocker ruthenium red (RuR). Shear stress-induced vasodilatation was similarly blocked by RuR and also by the phospholipase A2 inhibitor arachidonyl trifluoromethyl ketone (AACOCF3). 4alphaPDD produced endothelium-derived hyperpolarizing factor (EDHF)-type responses in A gracilis but not in rat carotid artery. Shear stress did not produce EDHF-type vasodilatation in either vessel type. Ca2+ entry through endothelial TRPV4 channels triggers NO- and EDHF-dependent vasodilatation. Moreover, TRPV4 appears to be mechanistically important in endothelial mechanosensing of shear stress.
                Bookmark

                Author and article information

                Journal
                Acta Physiologica
                Acta Physiol
                Wiley-Blackwell
                17481708
                January 2017
                January 2017
                : 219
                : 1
                : 176-187
                Article
                10.1111/apha.12768
                a58418a5-6707-4106-a0ce-2c7b8792c898
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article