102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex/Gender Differences and Autism: Setting the Scene for Future Research

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The relationship between sex/gender differences and autism has attracted a variety of research ranging from clinical and neurobiological to etiological, stimulated by the male bias in autism prevalence. Findings are complex and do not always relate to each other in a straightforward manner. Distinct but interlinked questions on the relationship between sex/gender differences and autism remain underaddressed. To better understand the implications from existing research and to help design future studies, we propose a 4-level conceptual framework to clarify the embedded themes.

          Method

          We searched PubMed for publications before September 2014 using search terms “‘sex OR gender OR females’ AND autism.” A total of 1,906 articles were screened for relevance, along with publications identified via additional literature reviews, resulting in 329 articles that were reviewed.

          Results

          Level 1, “Nosological and diagnostic challenges,” concerns the question, “How should autism be defined and diagnosed in males and females?” Level 2, “Sex/gender-independent and sex/gender-dependent characteristics,” addresses the question, “What are the similarities and differences between males and females with autism?” Level 3, “General models of etiology: liability and threshold,” asks the question, “How is the liability for developing autism linked to sex/gender?” Level 4, “Specific etiological–developmental mechanisms,” focuses on the question, “What etiological–developmental mechanisms of autism are implicated by sex/gender and/or sexual/gender differentiation?”

          Conclusions

          Using this conceptual framework, findings can be more clearly summarized, and the implications of the links between findings from different levels can become clearer. Based on this 4-level framework, we suggest future research directions, methodology, and specific topics in sex/gender differences and autism.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          De novo gene disruptions in children on the autistic spectrum.

          Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures

            Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures (‘four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics (‘four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006–2010). Evaluation of trends between the four major areas and the four comparison areas demonstrated that the largest relative growth was in immune dysregulation/inflammation, oxidative stress, toxicant exposures, genetics and neuroimaging. Research on mitochondrial dysfunction started growing in the last 5 years. Theory of mind and neuropathology research has declined in recent years. Although most publications implicated an association between the four major areas and ASD, publication bias may have led to an overestimation of this association. Further research into these physiological areas may provide insight into general or subset-specific processes that could contribute to the development of ASD and other psychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain growth across the life span in autism: age-specific changes in anatomical pathology.

              Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Am Acad Child Adolesc Psychiatry
                J Am Acad Child Adolesc Psychiatry
                Journal of the American Academy of Child and Adolescent Psychiatry
                Elsevier
                0890-8567
                1527-5418
                1 January 2015
                January 2015
                : 54
                : 1
                : 11-24
                Affiliations
                [a ]National Taiwan University Hospital and College of Medicine, Taipei, Taiwan and the Autism Research Centre, University of Cambridge, Cambridge, UK
                [b ]University of Cyprus, Nicosia, Cyprus and the Autism Research Centre, University of Cambridge
                [c ]University of Edinburgh and the Autism Research Centre, University of Cambridge
                [d ]Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK and the Autism Research Centre, University of Cambridge
                [e ]Cambridge Lifespan Asperger Syndrome Service (CLASS) Clinic, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, and the Autism Research Centre, University of Cambridge
                Author notes
                []Correspondence to Meng-Chuan Lai, MD, PhD, Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B, Trumpington Road, Cambridge CB2 8AH, UK mcl45@ 123456cam.ac.uk
                Article
                S0890-8567(14)00725-4
                10.1016/j.jaac.2014.10.003
                4284309
                25524786
                a596b888-73ba-4f19-bc06-5e0811a7ef80
                © 2015 American Academy of Child & Adolescent Psychaitry

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

                History
                : 13 October 2014
                Categories
                Review

                Clinical Psychology & Psychiatry
                autism,sex,gender,nosology,etiology
                Clinical Psychology & Psychiatry
                autism, sex, gender, nosology, etiology

                Comments

                Comment on this article