8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Trading Communities, the Networked Structure of International Relations, and the Kantian Peace

      ,
      Journal of Conflict Resolution
      SAGE Publications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Community detection in graphs

          The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Finding and evaluating community structure in networks

            We propose and study a set of algorithms for discovering community structure in networks -- natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fast unfolding of communities in large networks

              We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection method in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2.6 million customers and by analyzing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad-hoc modular networks. .
                Bookmark

                Author and article information

                Journal
                Journal of Conflict Resolution
                Journal of Conflict Resolution
                SAGE Publications
                0022-0027
                1552-8766
                October 23 2013
                August 28 2012
                : 57
                : 6
                : 1011-1042
                Article
                10.1177/0022002712453708
                a59a3b26-98ff-4e0e-89d1-1f7a5a5528e7
                © 2013
                History

                Comments

                Comment on this article