Blog
About

15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p < 0.05). Advantages of culturing constructs under mixed rather than static conditions included the maintenance of metabolic parameters in physiological ranges, 2-4 times higher construct cellularity (p &le 0.0001), more aerobic cell metabolism, and a more physiological, elongated cell shape. Cultivations in rotating bioreactors, in which flow patterns are laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue. Copyright 1999 John Wiley & Sons, Inc.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorometric assay of DNA in cartilage explants using Hoechst 33258.

          A simple two-step fluorometric assay of DNA in cartilage explants, utilizing the bisbenzimidazole dye Hoechst 33258, is described. Cartilage explants were prepared for assay by digestion with papain. Aliquots of the digest were mixed with dye solution, and the fluorescence emission measured. The enhancement in fluorescence of dye was specific for DNA, as demonstrated by 97% sensitivity to DNase and resistance to RNase. In addition, little or no interference was caused by non-DNA tissue components, since DNA caused an equal enhancement in fluorescence independent of the presence of papain-digested cartilage. By performing the assay on isolated chondrocytes, the cellular content of DNA was computed to be 7.7 pg per chondrocyte. The assay was stable for at least 2 h and sensitive to as little as 6 ng of DNA or equivalently less than 1000 cells. This procedure offers advantages over other established DNA assays of cartilage and may be especially useful in metabolic studies of cartilage explants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development.

            The switch from myocyte hyperplasia to hypertrophy occurs during the early postnatal period. The exact temporal sequence when cardiac myocytes cease dividing and become terminally differentiated is not certain, although it is currently believed that the transition takes place gradually over a 1-2-week period. The present investigation has characterized the growth pattern of cardiac myocytes during the early postnatal period. Cardiac myocytes were enzymatically isolated from the hearts of 1, 2, 3, 4, 6, 8, 10, and 12-day-old rats for the measurements of binucleation, cell volume and myocyte number. Almost all myocytes were mononucleated and cell volume remained relatively constant during the first 3 days of age. Increases in cell volume and binucleation of myocytes were first detected at day 4. Myocyte volume increased 2.5-fold from day 3 to day 12 (1416 +/- 320 compared to 3533 +/- 339 microns 3). The percentage of binucleated myocytes began to increase at day 4 and proceeded at a high rate, reaching the adult level of approximately 90% at day 12. Myocyte number increased 68% during the first 3 days (from 13.6 +/- 3.5 x 10(6) at day 1 to 22.9 +/- 5.6 x 10(10) at day 3) and remained constant thereafter. To confirm that no further myocyte division exists after 4 days, bromodeoxyuridine (Brdu) was administered to 4-day-old rats and the fate of DNA-synthesizing myocytes was examined 2 h and 2, 4, 6 and 8 days after Brdu injection. About 12% of myocytes were labeled with Brdu at 2 h and all were mononucleated at that time. Gradually, these Brdu-labeled myocytes became binucleated. However, the percentage of labeled myocytes in all groups was identical, indicating that DNA-synthesizing myocytes were becoming binucleated without further cell division after 4 days of age. Within 8 days after injection, approximately 82% of total labeled myocytes were binucleated, while the others remained mononucleated. Sarcomeric alpha-actinin was fully disassembled in dividing myocytes of 2-day-old rats, while typical alpha-actinin striations were present in dividing myocytes of 4-day-old rats. The results from this study suggest that a rapid switch from myocyte hyperplasia to hypertrophy occurs between postnatal day 3 and 4 in rat hearts.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A simple rapid and sensitive DNA assay procedure

                Bookmark

                Author and article information

                Journal
                Biotechnology and Bioengineering
                Biotechnol. Bioeng.
                Wiley
                0006-3592
                1097-0290
                September 05 1999
                September 05 1999
                : 64
                : 5
                : 580-589
                Article
                10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO;2-X
                10404238
                © 1999

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article