6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biased signaling by endogenous opioid peptides

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The “Opioid Epidemic” has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (μ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([ 35S]GTPγS binding and β-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of β-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals.

          beta-Arrestins are versatile adapter proteins that form complexes with most G-protein-coupled receptors (GPCRs) following agonist binding and phosphorylation of receptors by G-protein-coupled receptor kinases (GRKs). They play a central role in the interrelated processes of homologous desensitization and GPCR sequestration, which lead to the termination of G protein activation. beta-arrestin binding to GPCRs both uncouples receptors from heterotrimeric G proteins and targets them to clathrin-coated pits for endocytosis. Recent data suggest that beta-arrestins also function as GPCR signal transducers. They can form complexes with several signaling proteins, including Src family tyrosine kinases and components of the ERK1/2 and JNK3 MAP kinase cascades. By recruiting these kinases to agonist-occupied GPCRs, beta-arrestins confer distinct signaling activities upon the receptor. beta-arrestin-Src complexes have been proposed to modulate GPCR endocytosis, to trigger ERK1/2 activation and to mediate neutrophil degranulation. By acting as scaffolds for the ERK1/2 and JNK3 cascades, beta-arrestins both facilitate GPCR-stimulated MAP kinase activation and target active MAP kinases to specific locations within the cell. Thus, their binding to GPCRs might initiate a second wave of signaling and represent a novel mechanism of GPCR signal transduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators

            Mu-opioid receptor agonists represent mainstays of pain management. However, the therapeutic use of these agents is associated with serious side effects, including potentially lethal respiratory depression. Accordingly, there is a longstanding interest in the development of new opioid analgesics with improved therapeutic profiles. The alkaloids of the Southeast Asian plant Mitragyna speciosa , represented by the prototypical member mitragynine, are an unusual class of opioid receptor modulators with distinct pharmacological properties. Here we describe the first receptor-level functional characterization of mitragynine and related natural alkaloids at the mu-, kappa-, and delta-opioid receptors. These results show that mitragynine and the oxidized analog 7-hydroxymitragynine, are partial agonists of the human mu-opioid receptor and competitive antagonists at the kappa- and delta-opioid receptors. We also show that mitragynine and 7-hydroxymitragynine are G-protein-biased agonists of the mu-opioid receptor, which do not recruit β-arrestin following receptor activation. Therefore, the Mitragyna alkaloid scaffold represents a novel framework for the development of functionally biased opioid modulators, which may exhibit improved therapeutic profiles. Also presented is an enantioselective total synthesis of both (-)-mitragynine and its unnatural enantiomer, (+)-mitragynine, employing a proline-catalyzed Mannich-Michael reaction sequence as the key transformation. Pharmacological evaluation of (+)-mitragynine revealed its much weaker opioid activity. Likewise, the intermediates and chemical transformations developed in the total synthesis allowed the elucidation of previously unexplored structure-activity relationships (SAR) within the Mitragyna scaffold. Molecular docking studies, in combination with the observed chemical SAR, suggest that Mitragyna alkaloids adopt a binding pose at the mu-opioid receptor that is distinct from that of classical opioids.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              New concepts in opioid analgesia

                Bookmark

                Author and article information

                Contributors
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 26 2020
                May 26 2020
                May 26 2020
                May 11 2020
                : 117
                : 21
                : 11820-11828
                Article
                10.1073/pnas.2000712117
                7261131
                32393639
                a5a679b5-7ef1-48da-8b20-63ab925250ed
                © 2020

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article