11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultra-small fluorescent inorganic nanoparticles for bioimaging

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent advances of ultra-small fluorescence inorganic nanoparticles including quantum dots, metal nanoclusters, carbon and graphene dots, up-conversion nanocrystals, and silicon nanoparticles have been comprehensively reviewed.

          Abstract

          The novel optical, electrical, and magnetic properties of ultra-small inorganic nanoparticles make them very attractive in diverse applications in the fields of health, clean and renewable energy, and environmental sustainability. This article comprehensively summarizes state-of-the-art fluorescence imaging using ultra-small nanoparticles as probes, including quantum dots, metal nanoclusters, carbon nanomaterials, up-conversion, and silicon nanomaterials.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Semiconductor Clusters, Nanocrystals, and Quantum Dots

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Semiconductor nanocrystals as fluorescent biological labels.

              Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.
                Bookmark

                Author and article information

                Journal
                JMCBDV
                J. Mater. Chem. B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                2014
                2014
                : 2
                : 19
                : 2793-2818
                Article
                10.1039/C3TB21760D
                32261475
                a5b60d2e-4bd2-4321-bdec-a5941577689f
                © 2014
                History

                Comments

                Comment on this article