5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coordinated development of the mouse extrahepatic bile duct: implications for neonatal susceptibility to biliary injury

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extrahepatic bile duct is the primary tissue initially affected by the cholangiopathy biliary atresia. Biliary atresia affects neonates exclusively and current animal models suggest that the developing bile duct is uniquely susceptible to damage. In this study, we aimed to define the anatomical and functional differences between the neonatal and adult mouse extrahepatic bile ducts. We studied mouse passaged cholangiocytes, mouse BALB/c neonatal and adult primary cholangiocytes and isolated extrahepatic bile ducts, and a collagen reporter mouse. Methods included transmission electron microscopy, lectin staining, immunostaining, rhodamine uptake assays, bile acid toxicity assays, and in vitro modeling of the matrix. The cholangiocyte monolayer of the neonatal extrahepatic bile duct was immature, lacking the uniform apical glycocalyx and mature cell-cell junctions typical of adult cholangiocytes. Functional studies showed that the glycocalyx protected against bile acid injury and that neonatal cholangiocyte monolayers were more permeable than adult monolayers. In adult ducts, the submucosal space was filled with collagen I, elastin, hyaluronic acid, and proteoglycans. In contrast, the neonatal submucosa had little collagen I and elastin, although both increased rapidly after birth. In vitro modeling of the matrix suggested that the composition of the neonatal submucosa relative to the adult submucosa led to increased diffusion of bile. A Col-GFP reporter mouse showed that cells in the neonatal but not adult submucosa were actively producing collagen. We identified four key differences between the neonatal and adult extrahepatic bile duct. We showed that these features may have functional implications, suggesting the neonatal extrahepatic bile ducts are particularly susceptible to injury and fibrosis. Biliary atresia is a disease that affects newborns and is characterized by extrahepatic bile duct injury and obstruction with resulting liver injury. We identify four key differences between the epithelial and submucosal layers of the neonatal and adult extrahepatic bile duct and show that these may render the neonatal duct particularly susceptible to injury.

          Related collections

          Author and article information

          Journal
          Journal of Hepatology
          Journal of Hepatology
          Elsevier BV
          01688278
          September 2019
          September 2019
          Article
          10.1016/j.jhep.2019.08.036
          7079197
          31562906
          a5cda27c-9466-4133-8c04-8f85f482bcd8
          © 2019

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article