14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effect of grape seed extract against cadmium-induced testicular dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cadmium (Cd) is the most prevalent toxic metal present in livestock feed; therefore, the present study aimed to examine the ameliorative effects of grape seed extract (GSE) on cadmium chloride (CdCl 2)-induced testicular dysfunction of Wistar rats. Male adult Wistar rats (40 rats; n=10/group) were divided into four equal groups. Group one was used as a control, and was given ad libitum access to food and water. Groups 2–4 were treated with CdCl 2 [5 mg/kg body weight (BW)], GSE (400 mg/kg BW, orally), and GSE plus CdCl 2, respectively. Blood and testicular tissues were collected and assayed for biochemical and histopathological changes, respectively. Testicular genes were expressed using semi-quantitative RT-PCR analysis. The results of the present study demonstrated that there was a decrease in serum testosterone levels following CdCl 2 toxicity, which were normalized after GSE co-administration. Furthermore, CdCl 2 significantly increased the serum levels of malondialdehyde, and decreased levels of antioxidants. At the histopathological level, the testes of the CdCl 2 group exhibited congestion, edema in the interstitial blood vessels, irregular arrangement of the epithelial lining of the seminiferous tubules, and degeneration and sloughing of the spermatogenic cells, which accumulated in the center of the seminiferous tubules. Such pathological alterations were ameliorated following treatment with GSE in the CdCl 2 plus GSE group. The immunohistochemical expression of B-cell lymphoma 2-associated X protein was high in the CdCl 2 group, and low in the control and GSE groups. Co-treatment with GSE and CdCl 2 exhibited ameliorative effects on the immunoreactivity of B-cell lymphoma 2-associated X protein. CdCl 2 toxicity induced a significant downregulation in the mRNA expression levels of cytochrome P450 cholesterol side-chain cleavage enzyme, cytochrome P450 17A1, 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-HSD, androgen receptor, steroidogenic acute regulatory protein, and follicle-stimulating hormone receptor. GSE administration exhibited a stimulatory effect on steroidogenesis-associated enzymes, and co-treatment with GSE and CdCl 2 normalized and upregulated the mRNA expression levels of these examined genes. This study concluded that GSE has beneficial protective effects against the deleterious effects of CdCl 2 on the testis.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Current status of cadmium as an environmental health problem.

          Cadmium is a toxic metal occurring in the environment naturally and as a pollutant emanating from industrial and agricultural sources. Food is the main source of cadmium intake in the non-smoking population. The bioavailability, retention and toxicity are affected by several factors including nutritional status such as low iron status. Cadmium is efficiently retained in the kidney (half-time 10-30 years) and the concentration is proportional to that in urine (U-Cd). Cadmium is nephrotoxic, initially causing kidney tubular damage. Cadmium can also cause bone damage, either via a direct effect on bone tissue or indirectly as a result of renal dysfunction. After prolonged and/or high exposure the tubular injury may progress to glomerular damage with decreased glomerular filtration rate, and eventually to renal failure. Furthermore, recent data also suggest increased cancer risks and increased mortality in environmentally exposed populations. Dose-response assessment using a variety of early markers of kidney damage has identified U-Cd points of departure for early kidney effects between 0.5 and 3 microg Cd/g creatinine, similar to the points of departure for effects on bone. It can be anticipated that a considerable proportion of the non-smoking adult population has urinary cadmium concentrations of 0.5 microg/g creatinine or higher in non-exposed areas. For smokers this proportion is considerably higher. This implies no margin of safety between the point of departure and the exposure levels in the general population. Therefore, measures should be put in place to reduce exposure to a minimum, and the tolerably daily intake should be set in accordance with recent findings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metals, toxicity and oxidative stress.

            Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms.

              Mechanisms of carcinogenicity are discussed for metals and their compounds, classified as carcinogenic to humans or considered to be carcinogenic to humans: arsenic, antimony, beryllium, cadmium, chromium, cobalt, lead, nickel and vanadium. Physicochemical properties govern uptake, intracellular distribution and binding of metal compounds. Interactions with proteins (e.g., with zinc finger structures) appear to be more relevant for metal carcinogenicity than binding to DNA. In general, metal genotoxicity is caused by indirect mechanisms. In spite of diverse physicochemical properties of metal compounds, three predominant mechanisms emerge: (1) interference with cellular redox regulation and induction of oxidative stress, which may cause oxidative DNA damage or trigger signaling cascades leading to stimulation of cell growth; (2) inhibition of major DNA repair systems resulting in genomic instability and accumulation of critical mutations; (3) deregulation of cell proliferation by induction of signaling pathways or inactivation of growth controls such as tumor suppressor genes. In addition, specific metal compounds exhibit unique mechanisms such as interruption of cell-cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                April 2016
                23 February 2016
                23 February 2016
                : 13
                : 4
                : 3101-3109
                Affiliations
                [1 ]Medical Laboratories Department, College of Applied Medical Sciences, Taif University, Turabah, Taif 11942, Saudi Arabia
                [2 ]Medical Laboratories Department, College of Applied Medical Sciences, Shaqraa University, Ad-Dawadmi 31982, Saudi Arabia
                [3 ]Biotechnology and Genetic Engineering Unit, Taif University, Turabah, Taif 51431, Saudi Arabia
                [4 ]Cell Biology Department, National Research Centre, Giza 71515, Egypt
                [5 ]Department of Zoology, Faculty of Veterinary Medicine, Benha University, Toukh, Qalubiya 13736, Egypt
                [6 ]Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh, Qalubiya 13736, Egypt
                [7 ]Histology Department, Faculty of Veterinary Medicine, Benha University, Toukh, Qalubiya 13736, Egypt
                Author notes
                Correspondence to: Professor Mohamed Mohamed Soliman, Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh, Qalubiya 13736, Egypt, E-mail: mohamedsoliman8896@ 123456yahoo.com
                Article
                mmr-13-04-3101
                10.3892/mmr.2016.4928
                4805107
                26935153
                a5d92bec-0a0e-4f09-a3e3-3b98a4ef1ae2
                Copyright: © Alkhedaide et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 05 October 2015
                : 08 February 2016
                Categories
                Articles

                cdcl2 toxicity,grape seed extract,protective effects,testis,wistar rats

                Comments

                Comment on this article