5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial connexins in vascular function

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gap junctions are essential for intercellular crosstalk in blood and lymphatic vasculature. These clusters of intercellular channels ensure direct communication among endothelial cells and between endothelial and smooth muscle cells, and the synchronization of their behavior along the vascular tree. Gap junction channels are formed by connexins; six connexins form a connexon or hemichannel and the docking of two connexons result in a full gap junction channel allowing for the exchange of ions and small metabolites between neighboring cells. Recent evidence indicates that the intracellular domains of connexins may also function as an interaction platform (interactome) for other proteins, thereby regulating their function. Interestingly, fragments of Cx proteins generated by alternative internal translation were recently described, although their functions in the vascular wall remain to be uncovered. Variations in connexin expression are observed along different types of blood and lymphatic vessels; the most commonly found endothelial connexins are Cx37, Cx40, Cx43 and Cx47. Physiological studies on connexin-knockout mice demonstrated the essential roles of these channel-forming proteins in the coordination of vasomotor activity, endothelial permeability and inflammation, angiogenesis and in the maintenance of fluid balance in the body.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation.

          Lymphatic valves are essential for efficient lymphatic transport, but the mechanisms of early lymphatic-valve morphogenesis and the role of biomechanical forces are not well understood. We found that the transcription factors PROX1 and FOXC2, highly expressed from the onset of valve formation, mediate segregation of lymphatic-valve-forming cells and cell mechanosensory responses to shear stress in vitro. Mechanistically, PROX1, FOXC2, and flow coordinately control expression of the gap junction protein connexin37 and activation of calcineurin/NFAT signaling. Connexin37 and calcineurin are required for the assembly and delimitation of lymphatic valve territory during development and for its postnatal maintenance. We propose a model in which regionally increased levels/activation states of transcription factors cooperate with mechanotransduction to induce a discrete cell-signaling pattern and morphogenetic event, such as formation of lymphatic valves. Our results also provide molecular insights into the role of endothelial cell identity in the regulation of vascular mechanotransduction. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification

            Establishment of a functional vascular network is rate-limiting in embryonic development, tissue repair and engineering. During blood vessel formation, newly generated endothelial cells rapidly expand into primitive plexi that undergo vascular remodeling into circulatory networks, requiring coordinated growth inhibition and arterial-venous specification. Whether the mechanisms controlling endothelial cell cycle arrest and acquisition of specialized phenotypes are interdependent is unknown. Here we demonstrate that fluid shear stress, at arterial flow magnitudes, maximally activates NOTCH signaling, which upregulates GJA4 (commonly, Cx37) and downstream cell cycle inhibitor CDKN1B (p27). Blockade of any of these steps causes hyperproliferation and loss of arterial specification. Re-expression of GJA4 or CDKN1B, or chemical cell cycle inhibition, restores endothelial growth control and arterial gene expression. Thus, we elucidate a mechanochemical pathway in which arterial shear activates a NOTCH-GJA4-CDKN1B axis that promotes endothelial cell cycle arrest to enable arterial gene expression. These insights will guide vascular regeneration and engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The connexin 43 C-terminus: A tail of many tales.

              Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
                Bookmark

                Author and article information

                Journal
                Vasc Biol
                Vasc Biol
                vb
                Vascular Biology
                Bioscientifica Ltd (Bristol )
                2516-5658
                2019
                07 November 2019
                : 1
                : 1
                : H117-H124
                Affiliations
                [1 ]Department of Pathology and Immunology , University of Geneva, Geneva, Switzerland
                [2 ]Department of Medical Specializations – Cardiology , University of Geneva, Geneva, Switzerland
                Author notes
                Correspondence should be addressed to B R Kwak: Brenda.KwakChanson@ 123456unige.ch
                Article
                VB-19-0015
                10.1530/VB-19-0015
                7439941
                a5e6b449-55f1-4afd-8916-6f7acddf86d4
                © 2019 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 28 October 2019
                : 07 November 2019
                Product
                Categories
                Mini Review

                gap junction,connexin,endothelium,intercellular communication

                Comments

                Comment on this article