34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimation of the number of biophotons involved in the visual perception of a single-object image: Biophoton intensity can be considerably higher inside cells than outside

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, we have proposed a redox molecular hypothesis about the natural biophysical substrate of visual perception and imagery (B\'okkon, 2009. BioSystems; B\'okkon and D'Angiulli, 2009. Bioscience Hypotheses). Namely, the retina transforms external photon signals into electrical signals that are carried to the V1 (striate cortex). Then, V1 retinotopic electrical signals (spike-related electrical signals along classical axonal-dendritic pathways) can be converted into regulated ultraweak bioluminescent photons (biophotons) through redox processes within retinotopic visual neurons that make it possible to create intrinsic biophysical pictures during visual perception and imagery. However, the consensus opinion is to consider biophotons as by-products of cellular metabolism. This paper argues that biophotons are not by-products, other than originating from regulated cellular radical/redox processes. It also shows that the biophoton intensity can be considerably higher inside cells than outside. Our simple calculations, within a level of accuracy, suggest that the real biophoton intensity in retinotopic neurons may be sufficient for creating intrinsic biophysical picture representation of a single-object image during visual perception.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidants, antioxidants, and the degenerative diseases of aging.

          Metabolism, like other aspects of life, involves tradeoffs. Oxidant by-products of normal metabolism cause extensive damage to DNA, protein, and lipid. We argue that this damage (the same as that produced by radiation) is a major contributor to aging and to degenerative diseases of aging such as cancer, cardiovascular disease, immune-system decline, brain dysfunction, and cataracts. Antioxidant defenses against this damage include ascorbate, tocopherol, and carotenoids. Dietary fruits and vegetables are the principal source of ascorbate and carotenoids and are one source of tocopherol. Low dietary intake of fruits and vegetables doubles the risk of most types of cancer as compared to high intake and also markedly increases the risk of heart disease and cataracts. Since only 9% of Americans eat the recommended five servings of fruits and vegetables per day, the opportunity for improving health by improving diet is great.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary and secondary mechanisms of action of visible to near-IR radiation on cells.

            T Karu (1999)
            Cytochrome c oxidase is discussed as a possible photoacceptor when cells are irradiated with monochromatic red to near-IR radiation. Four primary action mechanisms are reviewed: changes in the redox properties of the respiratory chain components following photoexcitation of their electronic states, generation of singlet oxygen, localized transient heating of absorbing chromophores, and increased superoxide anion production with subsequent increase in concentration of the product of its dismutation, H2O2. A cascade of reactions connected with alteration in cellular homeostasis parameters (pHi, [Cai], cAMP, Eh, [ATP] and some others) is considered as a photosignal transduction and amplification chain in a cell (secondary mechanisms).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neocortical neuron number in humans: effect of sex and age.

              Modern stereological methods provide precise and reliable estimates of the number of neurons in specific regions of the brain. We decided to estimate the total number of neocortical neurons in the normal human brain and to analyze it with respect to the major macro- and microscopical structural components, to study the internal relationships of these components, and to quantitate the influence of important physiological variables on brain structure. The 94 brains reported represent a consecutive collection of brains from the general Danish population. The average numbers of neocortical neurons were 19 billion in female brains and 23 billion in male brains, a 16% difference. In our study, which covered the age range from 20 years to 90 years, approximately 10% of all neocortical neurons are lost over the life span in both sexes. Sex and age were the main determinants of the total number of neurons in the human neocortex, whereas body size, per se, had no influence on neuron number. Some of the data presented have been analyzed by using new mathematical designs. An equation predicting the total neocortical neuron number in any individual in which sex and age are known is provided.
                Bookmark

                Author and article information

                Journal
                2010-12-16
                Article
                1012.3625
                a5ea2e2e-9fa8-4b8f-9fed-36a8850f5f71

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                J Photochem Photobiol B, 100, 160-166, (2010)
                16 pages, 3 figures
                q-bio.NC q-bio.SC

                Cell biology,Neurosciences
                Cell biology, Neurosciences

                Comments

                Comment on this article