37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Forced expression of single defined transcription factors can selectively and stably convert cultured astroglia into synapse-forming excitatory and inhibitory neurons.

          Abstract

          Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation.

          Author Summary

          The brain consists of two major cell types: neurons, which transmit information, and glial cells, which support and protect neurons. Interestingly, evidence suggests that some glial cells, including astroglia, can be directly converted into neurons by specific proteins, a transformation that may aid in the functional repair of damaged brain tissue. However, in order for the repaired brain areas to function properly, it is important that astroglia be directed into appropriate neuronal subclasses. In this study, we show that non-neurogenic astroglia from the cerebral cortex can be reprogrammed in vitro using just a single transcription factor to yield fully functional excitatory or inhibitory neurons. We achieved this result through forced expression of the same transcription factors that instruct the genesis of these distinct neuronal subtypes during embryonic forebrain development. Moreover we demonstrate that reactive astroglia isolated from the adult cortex after local injury can be reprogrammed into synapse-forming excitatory or inhibitory neurons following a similar strategy. Our findings provide evidence that endogenous glial cells may prove a promising strategy for replacing neurons that have degenerated due to trauma or disease.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus.

          Adult neurogenesis in the dentate gyrus may contribute to hippocampus-dependent functions, yet little is known about when and how newborn neurons are functional because of limited information about the time course of their connectivity. By using retrovirus-mediated gene transduction, we followed the dendritic and axonal growth of adult-born neurons in the mouse dentate gyrus and identified distinct morphological stages that may indicate different levels of connectivity. Axonal projections of newborn neurons reach the CA3 area 10-11 d after viral infection, 5-6 d before the first spines are formed. Quantitative analyses show that the peak of spine growth occurs during the first 3-4 weeks, but further structural modifications of newborn neurons take place for months. Moreover, the morphological maturation is differentially affected by age and experience, as shown by comparisons between adult and postnatal brains and between housing conditions. Our study reveals the key morphological transitions of newborn granule neurons during their course of maturation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.

            Neural stem cells reside in the subventricular zone (SVZ) of the adult mammalian brain. This germinal region, which continually generates new neurons destined for the olfactory bulb, is composed of four cell types: migrating neuroblasts, immature precursors, astrocytes, and ependymal cells. Here we show that SVZ astrocytes, and not ependymal cells, remain labeled with proliferation markers after long survivals in adult mice. After elimination of immature precursors and neuroblasts by an antimitotic treatment, SVZ astrocytes divide to generate immature precursors and neuroblasts. Furthermore, in untreated mice, SVZ astrocytes specifically infected with a retrovirus give rise to new neurons in the olfactory bulb. Finally, we show that SVZ astrocytes give rise to cells that grow into multipotent neurospheres in vitro. We conclude that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GABA regulates synaptic integration of newly generated neurons in the adult brain.

              Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (gamma-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                May 2010
                May 2010
                18 May 2010
                : 8
                : 5
                : e1000373
                Affiliations
                [1 ]Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
                [2 ]Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
                [3 ]Munich Center for Integrated Protein Science CiPSM, Munich, Germany
                National Institutes of Health, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CH MG BB. Performed the experiments: CH RB SG GM PT RS ST BB. Analyzed the data: CH RB SG GM ST BB. Contributed reagents/materials/analysis tools: TS. Wrote the paper: CH MG BB.

                [¤]

                Current address: Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany

                ¶ These authors are joint senior authors on this work.

                Article
                09-PLBI-RA-2209R2
                10.1371/journal.pbio.1000373
                2872647
                20502524
                a5f2df79-552c-4efc-8a6b-045bbd406d92
                Heinrich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 May 2009
                : 12 April 2010
                Page count
                Pages: 29
                Categories
                Research Article
                Developmental Biology/Cell Differentiation
                Developmental Biology/Stem Cells
                Neuroscience/Neurobiology of Disease and Regeneration
                Neuroscience/Neuronal and Glial Cell Biology

                Life sciences
                Life sciences

                Comments

                Comment on this article