5
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aberrant Differentiation of Human Pluripotent Stem Cell-Derived Kidney Precursor Cells inside Mouse Vascularized Bioreactors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Numerous studies have documented the in vitro differentiation of human pluripotent stem cells (hPSCs) into kidney cells. Fewer studies have followed the fates of such kidney precursor cells (KPCs) inside animals, a more life-like setting. Here, we tested the hypothesis that implanting hPSC-derived KPCs into an in vivo milieu surgically engineered to be highly vascular would enhance their maturation into kidney tissues. Methods: 3D printed chambers containing KPCs were implanted into the thighs of adult immunodeficient mice. In some chambers, an arterial and venous flow-through (AVFT) was surgically fashioned. After 3 weeks and 3 months, implants were studied by histology, using qualitative and quantitative methods. Results: After 3 weeks, chambers containing AVFTs were richer in small vessels than contralateral chambers without AVFTs. Glomeruli with capillary loops and diverse types of tubules were detected in all chambers. At 3 months, chambers contained only rudimentary tubules and glomeruli that appeared avascular. In chambers with AVFTs, prominent areas of muscle-like cells were also detected near tubules and the abnormal tissues immunostained for transforming growth factor β1. These features have similarities to renal dysplasia, a typical histological signature of human congenital kidney malformations. Conclusions: This study urges a note of caution regarding the in vivo fates of hPSC-derived kidney precursors, with pathological differentiation appearing to follow a period of increased vascularity.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney.

          With the prevalence of end-stage renal disease rising 8% per annum globally, there is an urgent need for renal regenerative strategies. The kidney is a mesodermal organ that differentiates from the intermediate mesoderm (IM) through the formation of a ureteric bud (UB) and the interaction between this bud and the adjacent IM-derived metanephric mesenchyme (MM). The nephrons arise from a nephron progenitor population derived from the MM (ref. ). The IM itself is derived from the posterior primitive streak. Although the developmental origin of the kidney is well understood, nephron formation in the human kidney is completed before birth. Hence, there is no postnatal stem cell able to replace lost nephrons. In this study, we have successfully directed the differentiation of human embryonic stem cells (hESCs) through posterior primitive streak and IM under fully chemically defined monolayer culture conditions using growth factors used during normal embryogenesis. This differentiation protocol results in the synchronous induction of UB and MM that forms a self-organizing structure, including nephron formation, in vitro. Such hESC-derived components show broad renal potential ex vivo, illustrating the potential for pluripotent-stem-cell-based renal regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Renal Subcapsular Transplantation of PSC-Derived Kidney Organoids Induces Neo-vasculogenesis and Significant Glomerular and Tubular Maturation In Vivo

            Summary Human pluripotent stem cell (hPSC)-derived kidney organoids may facilitate disease modeling and the generation of tissue for renal replacement. Long-term application, however, will require transferability between hPSC lines and significant improvements in organ maturation. A key question is whether time or a patent vasculature is required for ongoing morphogenesis. Here, we show that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization. In vivo imaging of organoids under the kidney capsule confirms functional glomerular perfusion as well as connection to pre-existing vascular networks in the organoids. Wide-field electron microscopy demonstrates that transplantation results in formation of a glomerular basement membrane, fenestrated endothelial cells, and podocyte foot processes. Furthermore, compared with non-transplanted organoids, polarization and segmental specialization of tubular epithelium are observed. These data demonstrate that functional vascularization is required for progressive morphogenesis of human kidney organoids.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Higher-Order Kidney Organogenesis from Pluripotent Stem Cells

                Bookmark

                Author and article information

                Journal
                NEF
                Nephron
                10.1159/issn.1660-8151
                Nephron
                S. Karger AG
                1660-8151
                2235-3186
                2020
                October 2020
                05 August 2020
                : 144
                : 10
                : 509-524
                Affiliations
                [_a] aDivision of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
                [_b] bDepartment of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
                [_c] cRoyal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
                [_d] dDepartment of Burns and Plastic Surgery, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester, United Kingdom
                Author notes
                *Adrian S. Woolf, School of Biological Sciences, University of Manchester, Room D2515, Michael Smith Building Oxford Road, Manchester M13 9PT (UK), adrian.woolf@manchester.ac.uk
                Article
                509425 Nephron 2020;144:509–524
                10.1159/000509425
                7592943
                32756058
                a5f3538e-b8fe-4a00-8a23-3c93c8e542a5
                © 2020 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution 4.0 International License (CC BY). Usage, derivative works and distribution are permitted provided that proper credit is given to the author and the original publisher.Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 28 April 2020
                : 12 June 2020
                Page count
                Figures: 7, Tables: 1, Pages: 16
                Categories
                Experimental Nephrology and Genetics: Research Article

                Cardiovascular Medicine,Nephrology
                Vessel,Vein,Tubule,Muscle,Glomerulus,Flow-through,Dysplasia,Artery
                Cardiovascular Medicine, Nephrology
                Vessel, Vein, Tubule, Muscle, Glomerulus, Flow-through, Dysplasia, Artery

                Comments

                Comment on this article