91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactate has long been considered a “waste” by-product of cell metabolism, and it accumulates at sites of inflammation. Recent findings have identified lactate as an active metabolite in cell signalling, although its effects on immune cells during inflammation are largely unexplored. Here we ask whether lactate is responsible for T cells remaining entrapped in inflammatory sites, where they perpetuate the chronic inflammatory process. We show that lactate accumulates in the synovia of rheumatoid arthritis patients. Extracellular sodium lactate and lactic acid inhibit the motility of CD4 + and CD8 + T cells, respectively. This selective control of T cell motility is mediated via subtype-specific transporters (Slc5a12 and Slc16a1) that we find selectively expressed by CD4 + and CD8 + subsets, respectively. We further show both in vitro and in vivo that the sodium lactate-mediated inhibition of CD4 + T cell motility is due to an interference with glycolysis activated upon engagement of the chemokine receptor CXCR3 with the chemokine CXCL10. In contrast, we find the lactic acid effect on CD8 + T cell motility to be independent of glycolysis control. In CD4 + T helper cells, sodium lactate also induces a switch towards the Th17 subset that produces large amounts of the proinflammatory cytokine IL-17, whereas in CD8 + T cells, lactic acid causes the loss of their cytolytic function. We further show that the expression of lactate transporters correlates with the clinical T cell score in the synovia of rheumatoid arthritis patients. Finally, pharmacological or antibody-mediated blockade of subtype-specific lactate transporters on T cells results in their release from the inflammatory site in an in vivo model of peritonitis. By establishing a novel role of lactate in control of proinflammatory T cell motility and effector functions, our findings provide a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders.

          Abstract

          High levels of lactate that accumulate in chronic inflammatory sites can trigger unfavorable responses in infiltrating T cells; reducing T cells' sensitivity to lactate might offer therapeutic solutions to chronic inflammatory disorders.

          Author Summary

          Acidity is a feature of inflammatory sites such as arthritic synovia, atherosclerotic plaques, and tumor microenvironments and results in part from the accumulation of lactate as a product of glycolysis under hypoxic conditions. Recently it has emerged that lactate may be more than just a bystander and might act to modulate the immune-inflammatory response. Here we report just such activity: lactate inhibits T cell motility by interfering with glycolysis that is required for T cells to migrate, it causes T cells to produce higher amounts of the proinflammatory cytokine IL-17, and it triggers loss of cytolytic activity. These phenomena are hallmark features of T cells in chronic inflammatory infiltrates. The functional changes depend on the expression of specific lactate transporters by different subsets of T cells, namely the sodium lactate transporter Slc5a12 in CD4 + T cells and the lactic acid transporter Slc16a1 in CD8 + T cells. We propose that T cells entering inflammatory sites sense high concentrations of lactate via their specific transporters. Loss of motility leads to their entrapment at the site, where through their increased production of inflammatory cytokines yet decreased cytolytic capacity, they add detrimentally to chronic inflammation. Targeting lactate transporters and/or metabolic pathways on T cells could deliver novel, invaluable therapeutics for the treatment of widespread chronic inflammatory disorders.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function.

          Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell-based therapies against chronic infectious diseases and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma.

            Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. We used tissue microarray analysis to compare immune cell infiltration of different pancreaticobiliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis) and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We also analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice and the effects of all-trans retinoic acid (ATRA) on these processes. Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase(+) and CD68(+) cells compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8(+), FoxP3(+), CD56(+), or CD20(+) cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8(+) T cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8(+) T cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8(+) T cells, from patients with PDAC, had increased chemotaxis toward activated PSCs, which secrete CXCL12, compared with quiescent PSCs or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8(+) T cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective antitumor immune response. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium.

              To investigate the presence and role of interleukin-17 (IL-17) in rheumatoid arthritis (RA), and its regulation by antiinflammatory cytokines. The production of IL-17 was measured in supernatants of RA, osteoarthritis (OA), and normal synovial tissue pieces cultured ex vivo. Quantification of IL-17 was performed using a specific biologic assay. IL-17 gene expression was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR)-techniques. Immunohistochemistry was used to evaluate the frequency of IL-17-positive cells in synovium. The secretion of IL-17 by synovium was measured in the presence of IL-4, IL-13, and IL-10. In addition, the contributions of exogenous and endogenous IL-17 to IL-6 production by RA synovium were studied. Functional IL-17 was spontaneously produced by 16 of 18 RA (mean +/- SEM 41.7+/-11.4 units/ml), 2 of 12 OA (5.3+/-4.5 units/ml), and 0 of 3 normal synovial explant cultures. IL-17 messenger RNA expression was demonstrated by RT-PCR in 4 of 5 RA and 0 of 3 OA synovial samples. By immunostaining of RA synovium, IL-17-producing cells were found in the T cell-rich area. Addition of both IL-4 and IL-13 completely inhibited the production of IL-17, whereas IL-10 had no effect. Addition of exogenous IL-17 to RA synovium resulted in an increase in IL-6 production, whereas that of a blocking anti-IL-17 antibody reduced production of IL-6. The T cell cytokine IL-17 was found to be highly produced by RA, but not by OA, synovium. Its production and function were down-regulated by IL-4 and IL-13. These results indicate that IL-17 contributes to the active, proinflammatory pattern that is characteristic of RA. Through the contribution of IL-17, some Th1-like T cells appear to mediate synovial inflammation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                16 July 2015
                July 2015
                : 13
                : 7
                : e1002202
                Affiliations
                [1 ]William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
                [2 ]Queen Mary Innovation Ltd, Queen Mary University of London, London, United Kingdom
                National Jewish Medical and Research Center/Howard Hughes Medical Institute, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RH FMB CM. Performed the experiments: RH JS VRR SN. Analyzed the data: RH JS VRR SN CM. Contributed reagents/materials/analysis tools: TMM FDA MB CP MP. Wrote the paper: RH EJB FMB CM.

                Article
                PBIOLOGY-D-14-04164
                10.1371/journal.pbio.1002202
                4504715
                26181372
                a6057e17-a59f-4a88-be27-26917fd1fd00
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 1 December 2014
                : 16 June 2015
                Page count
                Figures: 7, Tables: 0, Pages: 24
                Funding
                RH is supported by a PhD studentship from the Medical Research Council, UK ( http://www.mrc.ac.uk/). This work is supported by a pilot grant from the Immune Systems Research Theme at Barts and The London SMD to RH and CM, the Innovation Fund from the Queen Mary Innovation Ltd to RH and CM and the British Heart Foundation Fellowship ( http://www.bhf.org.uk/) FS/12/38/29640 to CM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Life sciences
                Life sciences

                Comments

                Comment on this article