18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Additional Motor-Related Field in the Lateral Frontal Cortex of Squirrel Monkeys

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our earlier efforts to document the cortical connections of the ventral premotor cortex (PMv) revealed dense connections with a field rostral and lateral to PMv, an area we called the frontal rostral field (FR). Here, we present data collected in FR using electrophysiological and anatomical methods. Results show that FR contains an isolated motor representation of the forelimb that can be differentiated from PMv based on current thresholds and latencies to evoke electromyographic activity using intracortical microstimulation techniques. In addition, FR has a different pattern of cortical connections compared with PMv. Together, these data support that FR is an additional, previously undescribed motor-related area in squirrel monkeys.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging the premotor areas.

          Recent imaging studies of motor function provide new insights into the organization of the premotor areas of the frontal lobe. The pre-supplementary motor area and the rostral portion of the dorsal premotor cortex, the 'pre-PMd', are, in many respects, more like prefrontal areas than motor areas. Recent data also suggest the existence of separate functional divisions in the rostral cingulate zone.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The origin of corticospinal projections from the premotor areas in the frontal lobe.

            We determined the origin of corticospinal neurons in the frontal lobe. These neurons were labeled by retrograde transport of tracers after injections into either the dorsolateral funiculus at the second cervical segment or the gray matter of the spinal cord throughout the cervical enlargement. Using retrograde transport of tracer from the arm area of the primary motor cortex, we defined the arm representation in each premotor area in another set of animals. We found that corticospinal projections to cervical segments of the spinal cord originate from the primary motor cortex and from the 6 premotor areas in the frontal lobe. These are the same premotor areas that project directly to the arm area of the primary motor cortex. The premotor areas are located in parts of cytoarchitectonic area 6 on the lateral surface and medial wall of the hemisphere, as well as in subfields of areas 23 and 24 in the cingulate sulcus. The total number of corticospinal neurons in the arm representations of the premotor areas equals or exceeds the total number in the arm representation of the primary motor cortex. The premotor areas collectively comprise more than 60% of the cortical area in the frontal lobe that projects to the spinal cord. Like the primary motor cortex, each of the premotor areas contains local regions that have a high density of corticospinal neurons. These observations indicate that a substantial component of the corticospinal system originates from the premotor areas in the frontal lobe. Each of the premotor areas has direct access to the spinal cord, and as a consequence, each has the potential to influence the generation and control of movement independently of the primary motor cortex. These findings raise serious questions about the utility of viewing the primary motor cortex as the "upper motoneuron" or "final common pathway" for the central control of movement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motor areas of the medial wall: a review of their location and functional activation.

              Our goal in this review is to provide an anatomical framework for the analysis of the motor functions of the medial wall of the hemisphere in humans and laboratory primates. Converging evidence indicates that this region of the frontal lobe contains multiple areas involved in motor control. In the monkey, the medial wall contains four premotor areas that project directly to both the primary motor cortex and the spinal cord. These are the supplementary motor area (SMA) on the superior frontal gyrus and three motor areas buried within the cingulate sulcus. In addition, there is evidence that a fifth motor field, the pre-SMA, lies rostral to the SMA proper. Recent physiological observations provide evidence for functional differences among these motor fields. In the human, no consensus exists on the number of distinct motor fields on the medial wall. In this review, we summarize the results of positron emission tomography (PET) studies that examined functional activation on the medial wall of humans. Our analysis suggests that it is possible to identify at least four separate cortical areas on the medial wall. Each area appears to be relatively more involved in some aspects of motor behavior than others. These cortical areas in the human appear to be analogous to the pre-SMA, the SMA proper, and two of the cingulate motor areas of the monkey. We believe that these correspondences and the anatomical framework we describe will be important for unraveling the motor functions of the medial wall of the hemisphere.
                Bookmark

                Author and article information

                Journal
                Cereb Cortex
                cercor
                cercor
                Cerebral Cortex (New York, NY)
                Oxford University Press
                1047-3211
                1460-2199
                December 2008
                18 April 2008
                18 April 2008
                : 18
                : 12
                : 2719-2728
                Affiliations
                [1 ]Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, USA
                [2 ]Department of Psychiatry, Yale University School of Medicine, 34 Park Street, Room S304, New Haven, CT 06519, USA
                [3 ]Department of Molecular and Integrative Physiology
                [4 ]Kansas Intellectual and Developmental Disabilities Research
                [5 ]Landon Center on Aging, Kansas University Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
                Author notes
                Address correspondence to Numa Dancause, P.T., Ph.D., Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, USA. Email: Numa_Dancause@ 123456urmc.rochester.edu .
                Article
                10.1093/cercor/bhn050
                2583161
                18424778
                a613589a-9a45-4c1d-b9b6-e13a15451036
                © 2008 The Authors

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Feature Article

                Neurology
                intracortical microstimulation, motor control,frontal rostral area,neuroanatomy,ventral premotor cortex,frontal lateral cortex

                Comments

                Comment on this article