4
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patients’ Preferences for Artificial Intelligence Applications Versus Clinicians in Disease Diagnosis During the SARS-CoV-2 Pandemic in China: Discrete Choice Experiment

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Misdiagnosis, arbitrary charges, annoying queues, and clinic waiting times among others are long-standing phenomena in the medical industry across the world. These factors can contribute to patient anxiety about misdiagnosis by clinicians. However, with the increasing growth in use of big data in biomedical and health care communities, the performance of artificial intelligence (Al) techniques of diagnosis is improving and can help avoid medical practice errors, including under the current circumstance of COVID-19.

          Objective

          This study aims to visualize and measure patients’ heterogeneous preferences from various angles of AI diagnosis versus clinicians in the context of the COVID-19 epidemic in China. We also aim to illustrate the different decision-making factors of the latent class of a discrete choice experiment (DCE) and prospects for the application of AI techniques in judgment and management during the pandemic of SARS-CoV-2 and in the future.

          Methods

          A DCE approach was the main analysis method applied in this paper. Attributes from different dimensions were hypothesized: diagnostic method, outpatient waiting time, diagnosis time, accuracy, follow-up after diagnosis, and diagnostic expense. After that, a questionnaire is formed. With collected data from the DCE questionnaire, we apply Sawtooth software to construct a generalized multinomial logit (GMNL) model, mixed logit model, and latent class model with the data sets. Moreover, we calculate the variables’ coefficients, standard error, P value, and odds ratio (OR) and form a utility report to present the importance and weighted percentage of attributes.

          Results

          A total of 55.8% of the respondents (428 out of 767) opted for AI diagnosis regardless of the description of the clinicians. In the GMNL model, we found that people prefer the 100% accuracy level the most (OR 4.548, 95% CI 4.048-5.110, P<.001). For the latent class model, the most acceptable model consists of 3 latent classes of respondents. The attributes with the most substantial effects and highest percentage weights are the accuracy (39.29% in general) and expense of diagnosis (21.69% in general), especially the preferences for the diagnosis “accuracy” attribute, which is constant across classes. For class 1 and class 3, people prefer the AI + clinicians method (class 1: OR 1.247, 95% CI 1.036-1.463, P<.001; class 3: OR 1.958, 95% CI 1.769-2.167, P<.001). For class 2, people prefer the AI method (OR 1.546, 95% CI 0.883-2.707, P=.37). The OR of levels of attributes increases with the increase of accuracy across all classes.

          Conclusions

          Latent class analysis was prominent and useful in quantifying preferences for attributes of diagnosis choice. People’s preferences for the “accuracy” and “diagnostic expenses” attributes are palpable. AI will have a potential market. However, accuracy and diagnosis expenses need to be taken into consideration.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT

          Background Coronavirus disease has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performances. Materials and Methods In this retrospective and multi-center study, a deep learning model, COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT exams for the detection of COVID-19. Community acquired pneumonia (CAP) and other non-pneumonia CT exams were included to test the robustness of the model. The datasets were collected from 6 hospitals between August 2016 and February 2020. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results The collected dataset consisted of 4356 chest CT exams from 3,322 patients. The average age is 49±15 years and there were slightly more male patients than female (1838 vs 1484; p-value=0.29). The per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 114 of 127 (90% [95% CI: 83%, 94%]) and 294 of 307 (96% [95% CI: 93%, 98%]), respectively, with an AUC of 0.96 (p-value<0.001). The per-exam sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175) and 92% (239 of 259), respectively, with an AUC of 0.95 (95% CI: 0.93, 0.97). Conclusions A deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia and other lung diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mixed MNL models for discrete response

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence–enabled rapid diagnosis of patients with COVID-19

              For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT–PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT–PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT–PCR assay and next-generation sequencing RT–PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an area under the curve of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of patients who were positive for COVID-19 via RT–PCR who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J Med Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                February 2021
                23 February 2021
                23 February 2021
                : 23
                : 2
                Affiliations
                [1 ] Department of Public Health and Preventive Medicine School of Medicine Jinan University Guangzhou China
                [2 ] Faculty of Economics and Business University of Groningen Groningen Netherlands
                [3 ] School of Finance and Business Shanghai Normal University Shanghai China
                [4 ] Department of Obstetrics and Gynecology Brigham and Women’s Hospital Boston, MA United States
                [5 ] Center for Genomic Medicine, Massachusetts General Hospital Harvard Medical School Harvard University Boston, MA United States
                [6 ] School of Public Health The University of Hong Kong Hong Kong China (Hong Kong)
                Author notes
                Corresponding Author: Wai-Kit Ming wkming@ 123456connect.hku.hk
                Article
                v23i2e22841
                10.2196/22841
                7903977
                33493130
                a62fa1f2-4c73-4429-9e20-148dd05988f4
                ©Taoran Liu, Winghei Tsang, Fengqiu Huang, Oi Ying Lau, Yanhui Chen, Jie Sheng, Yiwei Guo, Babatunde Akinwunmi, Casper JP Zhang, Wai-Kit Ming. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.02.2021.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                Categories
                Original Paper
                Original Paper

                Medicine
                discrete choice experiment,artificial intelligence,patient preference,multinomial logit analysis,questionnaire,latent-class conditional logit,app,human clinicians,diagnosis,covid-19,china

                Comments

                Comment on this article