12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth’s tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life.

          Sources of organic molecules on the early Earth divide into three categories: delivery by extraterrestrial objects; organic synthesis driven by impact shocks; and organic synthesis by other energy sources (such as ultraviolet light or electrical discharges). Estimates of these sources for plausible end-member oxidation states of the early terrestrial atmosphere suggest that the heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources. Which sources of prebiotic organics were quantitatively dominant depends strongly on the composition of the early terrestrial atmosphere. In the event of an early strongly reducing atmosphere, production by atmospheric shocks seems to have dominated that due to electrical discharges. Organic synthesis by ultraviolet light may, in turn, have dominated shock production, but only if a long-wavelength absorber such as H2S were supplied to the atmosphere at a rate sufficient for synthesis to have been limited by ultraviolet flux, rather than by reactant abundance. In the apparently more likely case of an early terrestrial atmosphere of intermediate oxidation state, atmospheric shocks were probably of little importance for direct organic production. For [H2]/[CO2] ratios of approximately 0.1, net organic production was some three orders of magnitude lower than for reducing atmospheres, with delivery of intact exogenous organics in interplanetary dust particles (IDPs) and ultraviolet production being the most important sources. At still lower [H2]/[CO2] ratios, IDPs may have been the dominant source of prebiotic organics on the early Earth. Endogenous, exogenous and impact-shock sources of organics could each have made a significant contribution to the origins of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall.

            Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The origin of membrane bioenergetics.

              Harnessing energy as ion gradients across membranes is as universal as the genetic code. We leverage new insights into anaerobe metabolism to propose geochemical origins that account for the ubiquity of chemiosmotic coupling, and Na(+)/H(+) transporters in particular. Natural proton gradients acting across thin FeS walls within alkaline hydrothermal vents could drive carbon assimilation, leading to the emergence of protocells within vent pores. Protocell membranes that were initially leaky would eventually become less permeable, forcing cells dependent on natural H(+) gradients to pump Na(+) ions. Our hypothesis accounts for the Na(+)/H(+) promiscuity of bioenergetic proteins, as well as the deep divergence between bacteria and archaea. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                22 February 2018
                March 2018
                : 8
                : 1
                : 6
                Affiliations
                Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy; saladino@ 123456unitus.it (R.S.); lorenzo.botta@ 123456unitus.it (L.B.)
                Author notes
                [* ]Correspondence: ernesto.dimauro@ 123456uniroma1.it ; Tel.: +39-06-4991-2897
                Article
                life-08-00006
                10.3390/life8010006
                5871938
                29470412
                a64049d1-70cb-4a8c-981b-ddf86f7c523a
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 November 2017
                : 18 February 2018
                Categories
                Review

                meteorites,catalysis,formamide,prebiotic chemistry,geothermal scenarios,irradiation,radical chemistry,nucleosides

                Comments

                Comment on this article