2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genes for the alpha and beta subunits of the phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli.

      ,
      Journal of bacteriology

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli is a tetramer that contains two different kinds of polypeptide chains. To locate the genes for the two polypeptides, we analyzed temperature-sensitive mutants with defective phenylalanyl-transfer ribonucleic acid synthetases to see which subunit was altered. The method was in vitro complementation; mutant cell extracts were mixed with purified separated alpha or beta subunits of the wild-type enzyme to generate an active hybrid enzyme. With three mutants, enzyme activity appeared when alpha was added, but not when beta was added: these are, therefore, assumed to carry lesions in the gene for the alpha subunit. Two other mutants gave the opposite response and are presumably beta mutants. Enzyme activity is also generated when alpha and beta mutant extracts are mixed, but not when two alpha or two beta mutant extracts are mixed. The inactive mutant enzymes appear to be dissociated, as judged by their sedimentation in sucrose density gradients, but the dissociation may be only partial. The active enzyme generated by complementation occurred in two forms, one that resembled the native wild-type enzyme and one that sedimented more slowly. Both alpha and beta mutants are capable of generating the native form, although alpha mutants require prior urea denaturation of the defective enzyme. With the mutants thus characterized, the genes for the alpha and beta subunits (designated pheS and heT, respectively) were mapped. The gene order, as determined by transduction is aroD-pps-pheT-pheS. The pheS and pheT genes are close together and may be immediately adjacent.

          Related collections

          Author and article information

          Journal
          J. Bacteriol.
          Journal of bacteriology
          0021-9193
          0021-9193
          Aug 1976
          : 127
          : 2
          Article
          233002
          783122
          a6410e68-faaf-4fe6-a056-00368a47dca2
          History

          Comments

          Comment on this article