24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrasound-Assisted Extraction of Syringin from the Bark of Ilex rotunda Thumb Using Response Surface Methodology

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, a rapid extraction method based on ultrasound-assisted extraction (UAE) of syringin from the bark of Ilex rotunda Thumb using response surface methodology (RSM) is described. The syringin was analyzed and quantified by high performance liquid chromatography coupled with UV detection (HPLC-UV). The extraction solvent, extraction temperature and extraction time, the three main factors for UAE, were optimized with Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of a sonication frequency of 40 kHz, 65% methanol as the solvent, an extraction time of 30 min and an extraction temperature of 40 °C. Using these optimal conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness of model fit and the success of the RSM method for optimizing syringin extraction from the bark of I. rotunda.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Applications of ultrasound in food technology: Processing, preservation and extraction.

          Ultrasound is well known to have a significant effect on the rate of various processes in the food industry. Using ultrasound, full reproducible food processes can now be completed in seconds or minutes with high reproducibility, reducing the processing cost, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the time and energy normally needed for conventional processes. Several processes such as freezing, cutting, drying, tempering, bleaching, sterilization, and extraction have been applied efficiently in the food industry. The advantages of using ultrasound for food processing, includes: more effective mixing and micro-mixing, faster energy and mass transfer, reduced thermal and concentration gradients, reduced temperature, selective extraction, reduced equipment size, faster response to process extraction control, faster start-up, increased production, and elimination of process steps. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomena and mass transfer enhancement. This review presents a complete picture of current knowledge on application of ultrasound in food technology including processing, preservation and extraction. It provides the necessary theoretical background and some details about ultrasound the technology, the technique, and safety precautions. We will also discuss some of the factors which make the combination of food processing and ultrasound one of the most promising research areas in the field of modern food engineering. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples

            This paper reviews the phenolic-compound-extraction systems used to analyse fruit and vegetable samples over the last 10 years. Phenolic compounds are naturally occurring antioxidants, usually found in fruits and vegetables. Sample preparation for analytical studies is necessary to determine the polyphenolic composition in these matrices. The most widely used extraction system is liquid-liquid extraction (LLE), which is an inexpensive method since it involves the use of organic solvents, but it requires long extraction times, giving rise to possible extract degradation. Likewise, solid-phase extraction (SPE) can be used in liquid samples. Modern techniques, which have been replacing conventional ones, include: supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE). These alternative techniques reduce considerably the use of solvents and accelerate the extraction process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel.

              Hesperidin, an abundant and inexpensive bioflavonoid in Penggan (Citrus reticulata) peel, has been reported to possess a wide range of pharmacological properties. Ultrasonic extraction is an effective technique for the isolation of bioactive compounds from vegetable materials. In this study, the application of ultrasonic method was shown to be more efficient in extracting hesperidin from Penggan (C. reticulata) peel than the classical method. The effects of main ultrasonic-assisted extraction conditions on extraction yields of hesperidin from Penggan (C. reticulata) peel were evaluated, including extraction solvents, solvent volume, temperature, extraction time, ultrasonic power, ultrasonic frequency. Results showed that solvent, frequency and processing temperature were the most important factors for improving the extracting yields of hesperidin. When performed at the same temperature under the same time using three frequencies, methanol as the solvent improved the extraction yield evidently compared with ethanol or isopropanol; by comparison of the frequency influence, the yield of hesperidin was higher at 60 kHz than at 20 kHz and 100 kHz. The optimum ultrasonic conditions were determined as: methanol, frequency of 60 kHz, extraction time of 60 min, and temperature of 40 degrees C. In addition, the ultrasonic power had a weak effect on the yields of hesperidin within the experimental range. Extending ultrasonic treatment times did not result in degradation of hesperidin; the rotary beaker for materials can increase the yields of hesperidin.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                2012
                20 June 2012
                : 13
                : 6
                : 7607-7616
                Affiliations
                [1 ]College of Pharmacy, Hebei University, Baoding 071002, China; E-Mails: hyzlc@ 123456126.com (L.-C.Z.); xhxiagx@ 123456126.com (X.-H.X.)
                [2 ]The Affiliated Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning 530011, China; E-Mails: hyinggx@ 123456yeah.net (Y.H.); dx2000@ 123456126.com (X.D.); ljruikang@ 123456126.com (J.L.)
                [3 ]College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; E-Mail: liwei7727@ 123456126.com
                [4 ]China-Japan Union Hospital, Jilin University, Changchun 130033, China
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: ygl@ 123456hbu.edu.cn (G.-L.Y.); hwangjlu@ 123456126.com (H.W.); Tel.: +86-312-5971107 (G.-L.Y.); +86-431-85619922 (H.W.).
                Article
                ijms-13-07607
                10.3390/ijms13067607
                3397548
                22837716
                a65ddc68-e0c7-4bea-9775-b9ff874eb10d
                © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 28 April 2012
                : 12 May 2012
                : 15 May 2012
                Categories
                Communication

                Molecular biology
                ultrasound-assisted extraction,syringin,ilex rotunda,box-behnken design,response surface methodology

                Comments

                Comment on this article