195
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-flow nasal cannula oxygen therapy in adults

      review-article
      Journal of Intensive Care
      BioMed Central
      Oxygen therapy, Physiological effects, Clinical trials, Anatomical dead space, PEEP effect

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-flow nasal cannula (HFNC) oxygen therapy comprises an air/oxygen blender, an active humidifier, a single heated circuit, and a nasal cannula. It delivers adequately heated and humidified medical gas at up to 60 L/min of flow and is considered to have a number of physiological effects: reduction of anatomical dead space, PEEP effect, constant fraction of inspired oxygen, and good humidification. While there have been no big randomized clinical trials, it has been gaining attention as an innovative respiratory support for critically ill patients.

          Most of the available data has been published in the neonatal field. Evidence with critically ill adults are poor; however, physicians apply it to a variety of patients with diverse underlying diseases: hypoxemic respiratory failure, acute exacerbation of chronic obstructive pulmonary disease, post-extubation, pre-intubation oxygenation, sleep apnea, acute heart failure, patients with do-not-intubate order, and so on. Many published reports suggest that HFNC decreases breathing frequency and work of breathing and reduces needs of escalation of respiratory support in patients with diverse underlying diseases.

          Some important issues remain to be resolved, such as its indication, timing of starting and stopping HFNC, and escalating treatment. Despite these issues, HFNC oxygen therapy is an innovative and effective modality for the early treatment of adults with respiratory failure with diverse underlying diseases.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome.

          Oxygen is commonly administered after extubation. Although several devices are available, data about their clinical efficacy are scarce.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-flow oxygen therapy in acute respiratory failure.

            To compare the comfort of oxygen therapy via high-flow nasal cannula (HFNC) versus via conventional face mask in patients with acute respiratory failure. Acute respiratory failure was defined as blood oxygen saturation or = 0.50 via face mask. Oxygen was first humidified with a bubble humidifier and delivered via face mask for 30 min, and then via HFNC with heated humidifier for another 30 min. At the end of each 30-min period we asked the patient to evaluate dyspnea, mouth dryness, and overall comfort, on a visual analog scale of 0 (lowest) to 10 (highest). The results are expressed as median and interquartile range values. We included 20 patients, with a median age of 57 (40-70) years. The total gas flow administered was higher with the HFNC than with the face mask (30 [21.3-38.7] L/min vs 15 [12-20] L/min, P < .001). The HFNC was associated with less dyspnea (3.8 [1.3-5.8] vs 6.8 [4.1-7.9], P = .001) and mouth dryness (5 [2.3-7] vs 9.5 [8-10], P < .001), and was more comfortable (9 [8-10]) versus 5 [2.3-6.8], P < .001). HFNC was associated with higher P(aO(2)) (127 [83-191] mm Hg vs 77 [64-88] mm Hg, P = .002) and lower respiratory rate (21 [18-27] breaths/min vs 28 [25-32] breaths/min, P < .001), but no difference in P(aCO(2)). HFNC was better tolerated and more comfortable than face mask. HFNC was associated with better oxygenation and lower respiratory rate. HFNC could have an important role in the treatment of patients with acute respiratory failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients.

              High-flow nasal cannulae (HFNCs) create positive oropharyngeal airway pressure, but it is unclear how their use affects lung volume. Electrical impedance tomography allows the assessment of changes in lung volume by measuring changes in lung impedance. Primary objectives were to investigate the effects of HFNC on airway pressure (P(aw)) and end-expiratory lung volume (EELV) and to identify any correlation between the two. Secondary objectives were to investigate the effects of HFNC on respiratory rate, dyspnoea, tidal volume, and oxygenation; and the interaction between BMI and EELV. Twenty patients prescribed HFNC post-cardiac surgery were investigated. Impedance measures, P(aw), ratio, respiratory rate, and modified Borg scores were recorded first on low-flow oxygen and then on HFNC. A strong and significant correlation existed between P(aw) and end-expiratory lung impedance (EELI) (r=0.7, P<0.001). Compared with low-flow oxygen, HFNC significantly increased EELI by 25.6% [95% confidence interval (CI) 24.3, 26.9] and P(aw) by 3.0 cm H(2)O (95% CI 2.4, 3.7). Respiratory rate reduced by 3.4 bpm (95% CI 1.7, 5.2) with HFNC use, tidal impedance variation increased by 10.5% (95% CI 6.1, 18.3), and ratio improved by 30.6 mm Hg (95% CI 17.9, 43.3). A trend towards HFNC improving subjective dyspnoea scoring (P=0.023) was found. Increases in EELI were significantly influenced by BMI, with larger increases associated with higher BMIs (P<0.001). This study suggests that HFNCs reduce respiratory rate and improve oxygenation by increasing both EELV and tidal volume and are most beneficial in patients with higher BMIs.
                Bookmark

                Author and article information

                Contributors
                nmasaji@tokushima-u.ac.jp
                Journal
                J Intensive Care
                J Intensive Care
                Journal of Intensive Care
                BioMed Central (London )
                2052-0492
                31 March 2015
                31 March 2015
                2015
                : 3
                : 1
                : 15
                Affiliations
                Emergency and Critical Care Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503 Japan
                Article
                84
                10.1186/s40560-015-0084-5
                4393594
                25866645
                a6684259-2df1-4f29-86ea-126be08bf03a
                © Nishimura; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 January 2015
                : 18 March 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                oxygen therapy,physiological effects,clinical trials,anatomical dead space,peep effect

                Comments

                Comment on this article