19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-dimensional (3D) in vitro microvasculature in a polydimethylsiloxane-based microdevice was developed as a physiologically relevant model of angiogenesis. The angiogenic process is monitored using stage-top optical coherence tomography (OCT). OCT allows non-invasive monitoring of the 3D structures of the prepared host microvasculature and sprouted neovasculature without fluorescence staining. OCT monitoring takes only a few minutes to scan through the several-millimetre scale range, which provides the advantage of rapid observation of living samples. The obtained OCT cross-sectional images capture 3D features of the angiogenic sprouting process and provide information on the dynamics of luminal formation. The stage-top system used in this study enables the observer to visualize the in vitro dynamics of 3D cultured cells simply and conveniently, offering an alternative monitoring method for studies on angiogenesis and providing quantitative information about vascular morphological changes.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Optical coherence tomography.

          A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as approximately 10(-10) of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy.

            A long-standing goal of biology is to map the behavior of all cells during vertebrate embryogenesis. We developed digital scanned laser light sheet fluorescence microscopy and recorded nuclei localization and movement in entire wild-type and mutant zebrafish embryos over the first 24 hours of development. Multiview in vivo imaging at 1.5 billion voxels per minute provides "digital embryos," that is, comprehensive databases of cell positions, divisions, and migratory tracks. Our analysis of global cell division patterns reveals a maternally defined initial morphodynamic symmetry break, which identifies the embryonic body axis. We further derive a model of germ layer formation and show that the mesendoderm forms from one-third of the embryo's cells in a single event. Our digital embryos, with 55 million nucleus entries, are provided as a resource.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro.

              Angiogenesis is a complex morphogenetic process whereby endothelial cells from existing vessels invade as multicellular sprouts to form new vessels. Here, we have engineered a unique organotypic model of angiogenic sprouting and neovessel formation that originates from preformed artificial vessels fully encapsulated within a 3D extracellular matrix. Using this model, we screened the effects of angiogenic factors and identified two distinct cocktails that promoted robust multicellular endothelial sprouting. The angiogenic sprouts in our system exhibited hallmark structural features of in vivo angiogenesis, including directed invasion of leading cells that developed filopodia-like protrusions characteristic of tip cells, following stalk cells exhibiting apical-basal polarity, and lumens and branches connecting back to the parent vessels. Ultimately, sprouts bridged between preformed channels and formed perfusable neovessels. Using this model, we investigated the effects of angiogenic inhibitors on sprouting morphogenesis. Interestingly, the ability of VEGF receptor 2 inhibition to antagonize filopodia formation in tip cells was context-dependent, suggesting a mechanism by which vessels might be able to toggle between VEGF-dependent and VEGF-independent modes of angiogenesis. Like VEGF, sphingosine-1-phosphate also seemed to exert its proangiogenic effects by stimulating directional filopodial extension, whereas matrix metalloproteinase inhibitors prevented sprout extension but had no impact on filopodial formation. Together, these results demonstrate an in vitro 3D biomimetic model that reconstitutes the morphogenetic steps of angiogenic sprouting and highlight the potential utility of the model to elucidate the molecular mechanisms that coordinate the complex series of events involved in neovascularization.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                10 February 2017
                2017
                : 7
                : 42426
                Affiliations
                [1 ]Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku , Tokyo 153-8505, Japan
                [2 ]R&D Department 1, Screen Holdings Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku , Kyoto 612-8486, Japan
                [3 ]Center for Interdisciplinary Research on Micro-Nano Methods, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku , Tokyo 153-8505, Japan
                [4 ]Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi , Tokyo 181-8611, Japan
                Author notes
                Article
                srep42426
                10.1038/srep42426
                5301260
                28186184
                a66dc689-d5bf-454b-8b5a-83d60976a288
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 02 September 2016
                : 09 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content501

                Cited by9

                Most referenced authors398