39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Building an adverse outcome pathway network for estrogen-, androgen- and steroidogenesis-mediated reproductive toxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Adverse Outcome Pathways (AOPs) can support both testing and assessment of endocrine disruptors (EDs). There is, however, a need for further development of the AOP framework to improve its applicability in a regulatory context. Here we have inventoried the AOP-wiki to identify all existing AOPs related to mammalian reproductive toxicity arising from disruption to the estrogen, androgen, and steroidogenesis modalities. Core key events (KEs) shared between relevant AOPs were also identified to aid in further AOP network (AOPN) development.

          Methods: A systematic approach using two different methods was applied to screen and search the entire AOP-wiki library. An AOPN was visualized using Cytoscape. Manual refinement was performed to remove AOPS devoid of any KEs and/or KERs.

          Results: Fifty-eight AOPs relevant for mammalian reproductive toxicity were originally identified, with 42 AOPs included in the final AOPN. Several of the KEs and KE relationships (KERs) described similar events and were thus merged to optimize AOPN construction. Sixteen sub-networks related to effects on hormone levels or hormone activity, cancer outcomes, male and female reproductive systems, and overall effects on fertility and reproduction were identified within the AOPN. Twenty-six KEs and 11 KERs were identified as core blocks of knowledge in the AOPN, of which 19 core KEs are already included as parameters in current OECD and US EPA test guidelines.

          Discussion: The AOPN highlights knowledge gaps that can be targeted for further development of a more complete AOPN that can support the identification and assessment of EDs.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment.

          Ecological risk assessors face increasing demands to assess more chemicals, with greater speed and accuracy, and to do so using fewer resources and experimental animals. New approaches in biological and computational sciences may be able to generate mechanistic information that could help in meeting these challenges. However, to use mechanistic data to support chemical assessments, there is a need for effective translation of this information into endpoints meaningful to ecological risk-effects on survival, development, and reproduction in individual organisms and, by extension, impacts on populations. Here we discuss a framework designed for this purpose, the adverse outcome pathway (AOP). An AOP is a conceptual construct that portrays existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome at a biological level of organization relevant to risk assessment. The practical utility of AOPs for ecological risk assessment of chemicals is illustrated using five case examples. The examples demonstrate how the AOP concept can focus toxicity testing in terms of species and endpoint selection, enhance across-chemical extrapolation, and support prediction of mixture effects. The examples also show how AOPs facilitate use of molecular or biochemical endpoints (sometimes referred to as biomarkers) for forecasting chemical impacts on individuals and populations. In the concluding sections of the paper, we discuss how AOPs can help to guide research that supports chemical risk assessments and advocate for the incorporation of this approach into a broader systems biology framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.

            The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adverse outcome pathway (AOP) development I: strategies and principles.

              An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organization of regulatory relevance. Systematic organization of information into AOP frameworks has potential to improve regulatory decision-making through greater integration and more meaningful use of mechanistic data. However, for the scientific community to collectively develop a useful AOP knowledgebase that encompasses toxicological contexts of concern to human health and ecological risk assessment, it is critical that AOPs be developed in accordance with a consistent set of core principles. Based on the experiences and scientific discourse among a group of AOP practitioners, we propose a set of five fundamental principles that guide AOP development: (1) AOPs are not chemical specific; (2) AOPs are modular and composed of reusable components-notably key events (KEs) and key event relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks composed of multiple AOPs that share common KEs and KERs are likely to be the functional unit of prediction for most real-world scenarios; and (5) AOPs are living documents that will evolve over time as new knowledge is generated. The goal of the present article was to introduce some strategies for AOP development and detail the rationale behind these 5 key principles. Consideration of these principles addresses many of the current uncertainties regarding the AOP framework and its application and is intended to foster greater consistency in AOP development.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2625682/overviewRole: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1695311/overviewRole: Role:
                URI : https://loop.frontiersin.org/people/1252679/overviewRole: Role:
                URI : https://loop.frontiersin.org/people/489462/overviewRole:
                URI : https://loop.frontiersin.org/people/1156617/overviewRole: Role: Role: Role: Role: Role:
                Journal
                Front Toxicol
                Front Toxicol
                Front. Toxicol.
                Frontiers in Toxicology
                Frontiers Media S.A.
                2673-3080
                26 March 2024
                2024
                : 6
                : 1357717
                Affiliations
                [1] 1 Institute of Environmental Medicine , Karolinska Institutet , Stockholm, Sweden
                [2] 2 National Food Institute , Technical University of Denmark , Kongens Lyngby, Denmark
                Author notes

                Edited by: Rex FitzGerald, University of Basel, Switzerland

                Reviewed by: Anderson J. Martino-Andrade, Universidade Federal do Paraná, Brazil

                Matthew Dent, Unilever, United Kingdom

                *Correspondence: Anna Beronius, anna.beronius@ 123456ki.se
                Article
                1357717
                10.3389/ftox.2024.1357717
                11005472
                38601197
                a66dd49b-7541-425c-b292-0f7dfae02d74
                Copyright © 2024 Zilliacus, Draskau, Johansson, Svingen and Beronius.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 December 2023
                : 11 March 2024
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by a grant from the European Food Safety Authority (EFSA, grant agreement number GP/EFSA/PREV/2022/01).
                Categories
                Toxicology
                Original Research
                Custom metadata
                Regulatory Toxicology

                aop network,endocrine disruption,ed assessment,reproductive toxicity,eas modalities,next generation risk assessment

                Comments

                Comment on this article