17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep Convolutional Neural Network (CNN) has achieved remarkable results in computer vision tasks for end-to-end learning. We evaluate here the power of a deep CNN to learn robust features from raw Electroencephalogram (EEG) data to detect seizures. Seizures are hard to detect, as they vary both inter- and intra-patient. In this article, we use a deep CNN model for seizure detection task on an open-access EEG epilepsy dataset collected at the Boston Children's Hospital. Our deep learning model is able to extract spectral, temporal features from EEG epilepsy data and use them to learn the general structure of a seizure that is less sensitive to variations. For cross-patient EEG data, our method produced an overall sensitivity of 90.00%, specificity of 91.65%, and overall accuracy of 98.05% for the whole dataset of 23 patients. The system can detect seizures with an accuracy of 99.46%. Thus, it can be used as an excellent cross-patient seizure classifier. The results show that our model performs better than the previous state-of-the-art models for patient-specific and cross-patient seizure detection task. The method gave an overall accuracy of 99.65% for patient-specific data. The system can also visualize the special orientation of band power features. We use correlation maps to relate spectral amplitude features to the output in the form of images. By using the results from our deep learning model, this visualization method can be used as an effective multimedia tool for producing quick and relevant brain mapping images that can be used by medical experts for further investigation.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep learning with convolutional neural networks for EEG decoding and visualization

            Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High gamma power is phase-locked to theta oscillations in human neocortex.

              We observed robust coupling between the high- and low-frequency bands of ongoing electrical activity in the human brain. In particular, the phase of the low-frequency theta (4 to 8 hertz) rhythm modulates power in the high gamma (80 to 150 hertz) band of the electrocorticogram, with stronger modulation occurring at higher theta amplitudes. Furthermore, different behavioral tasks evoke distinct patterns of theta/high gamma coupling across the cortex. The results indicate that transient coupling between low- and high-frequency brain rhythms coordinates activity in distributed cortical areas, providing a mechanism for effective communication during cognitive processing in humans.
                Bookmark

                Author and article information

                Journal
                ACM Transactions on Multimedia Computing, Communications, and Applications
                ACM Trans. Multimedia Comput. Commun. Appl.
                Association for Computing Machinery (ACM)
                1551-6857
                1551-6865
                February 23 2019
                February 23 2019
                : 15
                : 1s
                : 1-17
                Affiliations
                [1 ]Research Chair of Pervasive and Mobile Computing, and Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
                [2 ]Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
                Article
                10.1145/3241056
                a676b5b9-9ac5-4cd1-95a9-fc4d4dbd0ada
                © 2019

                http://www.acm.org/publications/policies/copyright_policy#Background

                History

                Comments

                Comment on this article