32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC). These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders (MDD). Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Architectonic subdivision of the human orbital and medial prefrontal cortex.

          The structure of the human orbital and medial prefrontal cortex (OMPFC) was investigated using five histological and immunohistochemical stains and was correlated with a previous analysis in macaque monkeys [Carmichael and Price (1994) J. Comp. Neurol. 346:366-402]. A cortical area was recognized if it was distinct with at least two stains and was found in similar locations in different brains. All of the areas recognized in the macaque OMPFC have counterparts in humans. Areas 11, 13, and 14 were subdivided into areas 11m, 11l, 13a, 13b, 13m, 13l, 14r, and 14c. Within area 10, the region corresponding to area 10m in monkeys was divided into 10m and 10r, and area 10o (orbital) was renamed area 10p (polar). Areas 47/12r, 47/12m, 47/12l, and 47/12s occupy the lateral orbital cortex, corresponding to monkey areas 12r, 12m, 12l, and 12o. The agranular insula (areas Iam, Iapm, Iai, and Ial) extends onto the caudal orbital surface and into the horizontal ramus of the lateral sulcus. The growth of the frontal pole in humans has pushed area 25 and area 32pl, which corresponds to the prelimbic area 32 in Brodmann's monkey brain map, caudal and ventral to the genu of the corpus callosum. Anterior cingulate areas 24a and 24b also extend ventral to the genu of the corpus callosum. Area 32ac, corresponding to the dorsal anterior cingulate area 32 in Brodmann's human brain map, is anterior and dorsal to the genu. The parallel organization of the OMPFC in monkeys and humans allows experimental data from monkeys to be applied to studies of the human cortex. Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional mu opioid receptor regulation of sensory and affective dimensions of pain.

            The endogenous opioid system is involved in stress responses, in the regulation of the experience of pain, and in the action of analgesic opiate drugs. We examined the function of the opioid system and mu-opioid receptors in the brains of healthy human subjects undergoing sustained pain. Sustained pain induced the regional release of endogenous opioids interacting with mu-opioid receptors in a number of cortical and subcortical brain regions. The activation of the mu-opioid receptor system was associated with reductions in the sensory and affective ratings of the pain experience, with distinct neuroanatomical involvements. These data demonstrate the central role of the mu-opioid receptors and their endogenous ligands in the regulation of sensory and affective components of the pain experience.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study.

              Functional imaging studies indicate that imbalances in cortico-limbic activity and connectivity may underlie the pathophysiology of MDD. In this study, using functional Magnetic Resonance Imaging (fMRI), we investigated differences in cortico-limbic activity and connectivity between depressed patients and healthy controls. Fifteen unmedicated unipolar depressed patients and 15 matched healthy subjects underwent fMRI during which they first completed a conventional block-design activation experiment in which they were exposed to negative and neutral pictures. Next, low frequency blood oxygenation dependent (BOLD) related fluctuations (LFBF) data were acquired at rest and during steady-state exposure to neutral, positive and negative pictures. LFBF correlations were calculated between anterior cingulate cortex (ACC) and limbic regions--amygdala (AMYG), pallidostriatum (PST) and medial thalamus (MTHAL) and used as a measure of cortico-limbic connectivity. Depressed patients had increased activation of cortical and limbic regions. At rest and during exposure to neutral, positive, and negative pictures cortico-limbic LFBF correlations were decreased in depressed patients compared to healthy subjects. The finding of increased activation of limbic regions and decreased LFBF correlations between ACC and limbic regions is consistent with the hypothesis that decreased cortical regulation of limbic activation in response to negative stimuli may be present in depression.
                Bookmark

                Author and article information

                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                11 March 2014
                2014
                : 8
                : 73
                Affiliations
                [1] 1Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
                [2] 2Departments of Oral Biology and Psychiatry, Faculties of Dentistry and Medicine, University of Manitoba Winnipeg, MB, Canada
                [3] 3Department of Anesthesiology, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
                Author notes

                Edited by: Gavan McNally, University of New South Wales, Australia

                Reviewed by: Christina Dalla, University of Athens, Greece; Valery Grinevich, German Cancer Research Center DKFZ and University of Heidelberg, Germany

                *Correspondence: David T. Hsu, Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA e-mail: dthsu@ 123456umich.edu

                This article was submitted to the journal Frontiers in Behavioral Neuroscience.

                Article
                10.3389/fnbeh.2014.00073
                3949320
                24653686
                a679770e-95ee-4a2f-b558-69e0de4edd48
                Copyright © 2014 Hsu, Kirouac, Zubieta and Bhatnagar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 January 2014
                : 20 February 2014
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 118, Pages: 10, Words: 9022
                Categories
                Neuroscience
                Review Article

                Neurosciences
                paraventricular,thalamus,subgenual,stress,anxiety,addiction,depression,orexin
                Neurosciences
                paraventricular, thalamus, subgenual, stress, anxiety, addiction, depression, orexin

                Comments

                Comment on this article