8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AMPK Profiling in Rodent and Human Pancreatic Beta-Cells under Nutrient-Rich Metabolic Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic exposure of pancreatic β-cells to elevated nutrient levels impairs their function and potentially induces apoptosis. Like in other cell types, AMPK is activated in β-cells under conditions of nutrient deprivation, while little is known on AMPK responses to metabolic stresses. Here, we first reviewed recent studies on the role of AMPK activation in β-cells. Then, we investigated the expression profile of AMPK pathways in β-cells following metabolic stresses. INS-1E β-cells and human islets were exposed for 3 days to glucose (5.5–25 mM), palmitate or oleate (0.4 mM), and fructose (5.5 mM). Following these treatments, we analyzed transcript levels of INS-1E β-cells by qRT-PCR and of human islets by RNA-Seq; with a special focus on AMPK-associated genes, such as the AMPK catalytic subunits α1 ( Prkaa1) and α2 ( Prkaa2). AMPKα and pAMPKα were also evaluated at the protein level by immunoblotting. Chronic exposure to the different metabolic stresses, known to alter glucose-stimulated insulin secretion, did not change AMPK expression, either in insulinoma cells or in human islets. Expression profile of the six AMPK subunits was marginally modified by the different diabetogenic conditions. However, the expression of some upstream kinases and downstream AMPK targets, including K-ATP channel subunits, exhibited stress-specific signatures. Interestingly, at the protein level, chronic fructose treatment favored fasting-like phenotype in human islets, as witnessed by AMPK activation. Collectively, previously published and present data indicate that, in the β-cell, AMPK activation might be implicated in the pre-diabetic state, potentially as a protective mechanism.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.

          Obesity is a major epidemic, but its causes are still unclear. In this article, we investigate the relation between the intake of high-fructose corn syrup (HFCS) and the development of obesity. We analyzed food consumption patterns by using US Department of Agriculture food consumption tables from 1967 to 2000. The consumption of HFCS increased > 1000% between 1970 and 1990, far exceeding the changes in intake of any other food or food group. HFCS now represents > 40% of caloric sweeteners added to foods and beverages and is the sole caloric sweetener in soft drinks in the United States. Our most conservative estimate of the consumption of HFCS indicates a daily average of 132 kcal for all Americans aged > or = 2 y, and the top 20% of consumers of caloric sweeteners ingest 316 kcal from HFCS/d. The increased use of HFCS in the United States mirrors the rapid increase in obesity. The digestion, absorption, and metabolism of fructose differ from those of glucose. Hepatic metabolism of fructose favors de novo lipogenesis. In addition, unlike glucose, fructose does not stimulate insulin secretion or enhance leptin production. Because insulin and leptin act as key afferent signals in the regulation of food intake and body weight, this suggests that dietary fructose may contribute to increased energy intake and weight gain. Furthermore, calorically sweetened beverages may enhance caloric overconsumption. Thus, the increase in consumption of HFCS has a temporal relation to the epidemic of obesity, and the overconsumption of HFCS in calorically sweetened beverages may play a role in the epidemic of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease.

            Currently, we are experiencing an epidemic of cardiorenal disease characterized by increasing rates of obesity, hypertension, the metabolic syndrome, type 2 diabetes, and kidney disease. Whereas excessive caloric intake and physical inactivity are likely important factors driving the obesity epidemic, it is important to consider additional mechanisms. We revisit an old hypothesis that sugar, particularly excessive fructose intake, has a critical role in the epidemic of cardiorenal disease. We also present evidence that the unique ability of fructose to induce an increase in uric acid may be a major mechanism by which fructose can cause cardiorenal disease. Finally, we suggest that high intakes of fructose in African Americans may explain their greater predisposition to develop cardiorenal disease, and we provide a list of testable predictions to evaluate this hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic signaling in fuel-induced insulin secretion.

              The pancreatic islet β cell senses circulating levels of calorigenic nutrients to secrete insulin according to the needs of the organism. Altered insulin secretion is linked to various disorders such as diabetes, hypoglycemic states, and cardiometabolic diseases. Fuel stimuli, including glucose, free fatty acids, and amino acids, promote insulin granule exocytosis primarily via their metabolism in β cells and the production of key signaling metabolites. This paper reviews our current knowledge of the pathways involved in both positive and negative metabolic signaling for insulin secretion and assesses the role of established and candidate metabolic coupling factors, keeping recent developments in focus. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                01 June 2020
                June 2020
                : 21
                : 11
                : 3982
                Affiliations
                [1 ]Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; Thierry.Brun@ 123456unige.ch (T.B.); Cecilia.Jimenez-Sanchez@ 123456unige.ch (C.J.-S.); noushin.hadadi@ 123456unige.ch (N.H.); Dominique.Duhamel@ 123456unige.ch (D.D.); Clarissa.Bartley@ 123456unige.ch (C.B.); Lucie.Oberhauser@ 123456unige.ch (L.O.); Mirko.Trajkovski@ 123456unige.ch (M.T.)
                [2 ]Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; jgsm@ 123456bmb.sdu.dk (J.G.S.M.); s.mandrup@ 123456bmb.sdu.dk (S.M.)
                Author notes
                Author information
                https://orcid.org/0000-0002-1659-4283
                https://orcid.org/0000-0001-6614-4910
                https://orcid.org/0000-0002-2005-1433
                Article
                ijms-21-03982
                10.3390/ijms21113982
                7312098
                32492936
                a679de00-c432-4b08-bf7a-ee1e398a632a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 April 2020
                : 29 May 2020
                Categories
                Article

                Molecular biology
                ampk,atp,fructose,pancreatic islets,beta-cell,insulin,glucotoxicity
                Molecular biology
                ampk, atp, fructose, pancreatic islets, beta-cell, insulin, glucotoxicity

                Comments

                Comment on this article