7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer's disease subjects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia

          Neurology, 44(12), 2308-2308
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MetaboAnalyst: a web server for metabolomic data analysis and interpretation

            Metabolomics is a newly emerging field of ‘omics’ research that is concerned with characterizing large numbers of metabolites using NMR, chromatography and mass spectrometry. It is frequently used in biomarker identification and the metabolic profiling of cells, tissues or organisms. The data processing challenges in metabolomics are quite unique and often require specialized (or expensive) data analysis software and a detailed knowledge of cheminformatics, bioinformatics and statistics. In an effort to simplify metabolomic data analysis while at the same time improving user accessibility, we have developed a freely accessible, easy-to-use web server for metabolomic data analysis called MetaboAnalyst. Fundamentally, MetaboAnalyst is a web-based metabolomic data processing tool not unlike many of today's web-based microarray analysis packages. It accepts a variety of input data (NMR peak lists, binned spectra, MS peak lists, compound/concentration data) in a wide variety of formats. It also offers a number of options for metabolomic data processing, data normalization, multivariate statistical analysis, graphing, metabolite identification and pathway mapping. In particular, MetaboAnalyst supports such techniques as: fold change analysis, t-tests, PCA, PLS-DA, hierarchical clustering and a number of more sophisticated statistical or machine learning methods. It also employs a large library of reference spectra to facilitate compound identification from most kinds of input spectra. MetaboAnalyst guides users through a step-by-step analysis pipeline using a variety of menus, information hyperlinks and check boxes. Upon completion, the server generates a detailed report describing each method used, embedded with graphical and tabular outputs. MetaboAnalyst is capable of handling most kinds of metabolomic data and was designed to perform most of the common kinds of metabolomic data analyses. MetaboAnalyst is accessible at http://www.metaboanalyst.ca
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration.

              The glucose transporter GLUT1 at the blood-brain barrier (BBB) mediates glucose transport into the brain. Alzheimer's disease is characterized by early reductions in glucose transport associated with diminished GLUT1 expression at the BBB. Whether GLUT1 reduction influences disease pathogenesis remains, however, elusive. Here we show that GLUT1 deficiency in mice overexpressing amyloid β-peptide (Aβ) precursor protein leads to early cerebral microvascular degeneration, blood flow reductions and dysregulation and BBB breakdown, and to accelerated amyloid β-peptide (Aβ) pathology, reduced Aβ clearance, diminished neuronal activity, behavioral deficits, and progressive neuronal loss and neurodegeneration that develop after initial cerebrovascular degenerative changes. We also show that GLUT1 deficiency in endothelium, but not in astrocytes, initiates the vascular phenotype as shown by BBB breakdown. Thus, reduced BBB GLUT1 expression worsens Alzheimer's disease cerebrovascular degeneration, neuropathology and cognitive function, suggesting that GLUT1 may represent a therapeutic target for Alzheimer's disease vasculo-neuronal dysfunction and degeneration.
                Bookmark

                Author and article information

                Journal
                Neurobiology of Aging
                Neurobiology of Aging
                Elsevier BV
                01974580
                July 2016
                July 2016
                : 43
                :
                : 1-12
                Article
                10.1016/j.neurobiolaging.2016.03.005
                27255810
                a679e1f8-01ec-4529-940d-ee7de0957d14
                © 2016
                History

                Comments

                Comment on this article