1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Frequent Administration of Bacteriophage on Therapeutic Efficacy in an A. baumannii Mouse Wound Infection Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spread of multidrug antibiotic resistance (MDR) is a widely recognized crisis in the treatment of bacterial infections, including those occurring in military communities. Recently, the World Health Organization published its first ever list of antibiotic-resistant “priority pathogens” – a catalog of 12 families of bacteria that pose the greatest threat to human health with A. baumannii listed in the “Priority 1: Critical” category of pathogens. With the increasing prevalence of antibiotic resistance and limited development of new classes of antibiotics, alternative antimicrobial therapies are needed, with lytic bacteriophage (phage) specifically targeted against each of the high priority bacterial infections as a potential approach currently in development toward regulatory approval for clinical use. Balb/c mice were prophylactically administered PBS or phage selected against A. baumannii strain AB5075. After 3 weeks, mice were anesthetized, wounded (dorsal), and challenged topically with AB5075. Following infection, mice were subsequently treated with PBS or phage for three consecutive days, and evaluated for 3 weeks to assess the safety and efficacy of the phage treatment relative to the control. We assessed mortality, bacterial burden, time to wound closure, systemic and local cytokine profiles, alterations in host cellular immunity, and finally presence of neutralizing antibodies to the phage mixture. In our study, we found that prophylactic phage administration led to a significant reduction in monocyte-related cytokines in serum compared to mice given PBS. However, we detected no significant changes to circulating blood populations or immune cell populations of secondary lymphoid organs compared to PBS-treated mice. Following prophylactic phage administration, we detected a marked increase in total immunoglobulins in serum, particularly IgG2a and IgG2b. Furthermore, we determined that these antibodies were able to specifically target phage and effectively neutralize their ability to lyse their respective target. In regards to their therapeutic efficacy, administration of phage treatment effectively decreased wound size of mice infected with AB5075 without adverse effects. In conclusion, our data demonstrate that phage can serve as a safe and effective novel therapeutic agent against A. baumannii without adverse reactions to the host and pre-exposure to phage does not seem to adversely affect therapeutic efficacy. This study is an important proof of concept to support the efforts to develop phage as a novel therapeutic product for treatment of complex bacterial wound infections.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options.

          Multidrug-resistant Acinetobacter baumannii is recognized to be among the most difficult antimicrobial-resistant gram-negative bacilli to control and treat. Increasing antimicrobial resistance among Acinetobacter isolates has been documented, although definitions of multidrug resistance vary in the literature. A. baumannii survives for prolonged periods under a wide range of environmental conditions. The organism causes outbreaks of infection and health care-associated infections, including bacteremia, pneumonia, meningitis, urinary tract infection, and wound infection. Antimicrobial resistance greatly limits the therapeutic options for patients who are infected with this organism, especially if isolates are resistant to the carbapenem class of antimicrobial agents. Because therapeutic options are limited for multidrug-resistant Acinetobacter infection, the development or discovery of new therapies, well-controlled clinical trials of existing antimicrobial regimens and combinations, and greater emphasis on the prevention of health care-associated transmission of multidrug-resistant Acinetobacter infection are essential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Standard conformations for the canonical structures of immunoglobulins.

            A comparative analysis of the main-chain conformation of the L1, L2, L3, H1 and H2 hypervariable regions in 17 immunoglobulin structures that have been accurately determined at high resolution is described. This involves 79 hypervariable regions in all. We also analysed a part of the H3 region in 12 of the 15 VH domains considered here. On the basis of the residues at key sites the 79 hypervariable regions can be assigned to one of 18 different canonical structures. We show that 71 of these hypervariable regions have a conformation that is very close to what can be defined as a "standard" conformation of each canonical structure. These standard conformations are described in detail. The other eight hypervariable regions have small deviations from the standard conformations that, in six cases, involve only the rotation of a single peptide group. Most H3 hypervariable regions have the same conformation in the part that is close to the framework and the details of this conformation are also described here. Copyright 1997 Academic Press Limited
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen.

              The rise of multi-drug-resistant (MDR) bacteria has spurred renewed interest in the use of bacteriophages in therapy. However, mechanisms contributing to phage-mediated bacterial clearance in an animal host remain unclear. We investigated the effects of host immunity on the efficacy of phage therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model. Comparing efficacies of phage-curative and prophylactic treatments in healthy immunocompetent, MyD88-deficient, lymphocyte-deficient, and neutrophil-depleted murine hosts revealed that neutrophil-phage synergy is essential for the resolution of pneumonia. Population modeling of in vivo results further showed that neutrophils are required to control both phage-sensitive and emergent phage-resistant variants to clear infection. This "immunophage synergy" contrasts with the paradigm that phage therapy success is largely due to bacterial permissiveness to phage killing. Lastly, therapeutic phages were not cleared by pulmonary immune effector cells and were immunologically well tolerated by lung tissues.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 March 2020
                2020
                : 11
                : 414
                Affiliations
                [1] 1Henry M Jackson Foundation for the Advancement of Military Medicine , Bethesda, MD, United States
                [2] 2Naval Medical Research Center , Silver Spring, MD, United States
                [3] 3Walter Reed Army Institute of Research , Silver Spring, MD, United States
                [4] 4Biological Defense Research Directorate, Naval Medical Research Center , Fort Detrick, MD, United States
                [5] 5Naval Medical Research Unit-6 , Lima, Peru
                Author notes

                Edited by: Robert Czajkowski, University of Gdańsk, Poland

                Reviewed by: Catherine Maylin Loc-Carrillo, The University of Utah, United States; Rodolfo García-Contreras, National Autonomous University of Mexico, Mexico

                *Correspondence: Michael D. Rouse, michael.d.rouse11.ctr@ 123456mail.mil

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00414
                7090133
                32256472
                a67c5154-c9fd-4340-978b-c29478903b1a
                Copyright © 2020 Rouse, Stanbro, Roman, Lipinski, Jacobs, Biswas, Regeimbal, Henry, Stockelman and Simons.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 December 2019
                : 27 February 2020
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 46, Pages: 13, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                bacteriophage,acinetobacter baumannii,wound infection,host immunity,therapeutic efficacy

                Comments

                Comment on this article