22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda.

      Journal of Molecular Evolution
      Animals, Base Composition, Base Sequence, Crustacea, classification, genetics, DNA Primers, Environment, Evolution, Molecular, Molecular Sequence Data, Nucleic Acid Conformation, Phylogeny, RNA, Ribosomal, 28S, chemistry, Species Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The expansion segments within the eukaryote nuclear 23S-like ribosomal RNA molecule are now well characterized in many diverse organisms. A different base compositional bias, a higher propensity for size variability, and an increased evolutionary rate distinguish these regions from the universally conserved "core" regions of the molecule. In addition, some expansion segments of higher eukaryotes exhibit significant sequence simplicity which is hypothesized to occur by slippage-mediated mutational processes. We describe the discovery of extreme size variation of the D3 expansion segment in the crustacean order Isopoda. Among 11 species D3 varies in size from 180 to 518 nucleotides but maintains a homologous secondary structure. The D3 size is significantly positively correlated to relative simplicity factor (RSF), indicating that growth is most likely by insertion of simple sequences. D3 size and RSF correlate approximately with a morphology-based phylogeny, and within oniscideans RSF increases as more recent divergences occur. The D3 of Armadillidium vulgare, with an RSF of 1.87, is the highest value recorded for any known expansion segment. Regions of high sequence simplicity in nuclear ribosomal RNA were previously only known from the higher vertebrate lineage. Here we demonstrate that this phenomenon occurs in a more extreme condition within a monophyletic invertebrate lineage. The extreme size changes identified could indicate that expansion segments are an extraneous element in the functioning ribosome.

          Related collections

          Author and article information

          Comments

          Comment on this article