20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT 1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Major depressive disorder.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic dysfunction in depression: potential therapeutic targets.

            Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants. Basic studies show that ketamine rapidly induces synaptogenesis and reverses the synaptic deficits caused by chronic stress. These findings highlight the central importance of homeostatic control of mood circuit connections and form the basis of a synaptogenic hypothesis of depression and treatment response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report.

              This report describes the participants and compares the acute and longer-term treatment outcomes associated with each of four successive steps in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial. A broadly representative adult outpatient sample with nonpsychotic major depressive disorder received one (N=3,671) to four (N=123) successive acute treatment steps. Those not achieving remission with or unable to tolerate a treatment step were encouraged to move to the next step. Those with an acceptable benefit, preferably symptom remission, from any particular step could enter a 12-month naturalistic follow-up phase. A score of or=11 (HRSD(17)>or=14) defined relapse. The QIDS-SR(16) remission rates were 36.8%, 30.6%, 13.7%, and 13.0% for the first, second, third, and fourth acute treatment steps, respectively. The overall cumulative remission rate was 67%. Overall, those who required more treatment steps had higher relapse rates during the naturalistic follow-up phase. In addition, lower relapse rates were found among participants who were in remission at follow-up entry than for those who were not after the first three treatment steps. When more treatment steps are required, lower acute remission rates (especially in the third and fourth treatment steps) and higher relapse rates during the follow-up phase are to be expected. Studies to identify the best multistep treatment sequences for individual patients and the development of more broadly effective treatments are needed.
                Bookmark

                Author and article information

                Journal
                Mol Psychiatry
                Mol. Psychiatry
                Molecular Psychiatry
                Nature Publishing Group
                1359-4184
                1476-5578
                March 2016
                23 June 2015
                : 21
                : 3
                : 328-338
                Affiliations
                [1 ]Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
                [2 ]Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas) , Barcelona, Spain
                [3 ]Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII , Madrid, Spain
                [4 ]Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC; UC-CISC-SODERCAN) , Santander, Spain
                [5 ]Department of Pharmacology, School of Medicine, Universidad Complutense and IIS Hospital 12 de Octubre , Madrid, Spain
                [6 ]n-Life Therapeutics, S.L. , Granada, Spain
                Author notes
                [* ]Department of Neurochemistry and Neuropharmacology, IIBB-CSIC-IDIBAPS , Rosselló 161, 6th floor, Barcelona 08036, Spain. E-mail: abbnqi@iibb.csic.es
                Article
                mp201580
                10.1038/mp.2015.80
                4759205
                26100539
                a68eade3-d0c7-4271-8038-c113cd7b4f47
                Copyright © 2016 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 October 2014
                : 27 March 2015
                : 06 May 2015
                Categories
                Original Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                scite_

                Similar content57

                Cited by20

                Most referenced authors578