17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tension, contraction and tissue morphogenesis

      ,
      Development
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4083221e119">D'Arcy Thompson was a proponent of applying mathematical and physical principles to biological systems, an approach that is becoming increasingly common in developmental biology. Indeed, the recent integration of quantitative experimental data, force measurements and mathematical modeling has changed our understanding of morphogenesis – the shaping of an organism during development. Emerging evidence suggests that the subcellular organization of contractile cytoskeletal networks plays a key role in force generation, while on the tissue level the spatial organization of forces determines the morphogenetic output. Inspired by D'Arcy Thompson's <i>On Growth and Form</i>, we review our current understanding of how biological forms are created and maintained by the generation and organization of contractile forces at the cell and tissue levels. We focus on recent advances in our understanding of how cells actively sculpt tissues and how forces are involved in specific morphogenetic processes. </p><p class="first" id="d4083221e125"> <b>Summary:</b> This Review emphasizes the role of the actomyosin meshwork in determining the forces that operate within and between cells and their environment to shape and organize cells and tissues. </p>

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism of blebbistatin inhibition of myosin II.

          Blebbistatin is a recently discovered small molecule inhibitor showing high affinity and selectivity toward myosin II. Here we report a detailed investigation of its mechanism of inhibition. Blebbistatin does not compete with nucleotide binding to the skeletal muscle myosin subfragment-1. The inhibitor preferentially binds to the ATPase intermediate with ADP and phosphate bound at the active site, and it slows down phosphate release. Blebbistatin interferes neither with binding of myosin to actin nor with ATP-induced actomyosin dissociation. Instead, it blocks the myosin heads in a products complex with low actin affinity. Blind docking molecular simulations indicate that the productive blebbistatin-binding site of the myosin head is within the aqueous cavity between the nucleotide pocket and the cleft of the actin-binding interface. The property that blebbistatin blocks myosin II in an actin-detached state makes the compound useful both in muscle physiology and in exploring the cellular function of cytoplasmic myosin II isoforms, whereas the stabilization of a specific myosin intermediate confers a great potential in structural studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The way things move: looking under the hood of molecular motor proteins.

            The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila.

              Planar cell polarity (PCP) proteins form polarized cortical domains that govern polarity of external structures such as hairs and cilia in both vertebrate and invertebrate epithelia. The mechanisms that globally orient planar polarity are not understood, and are investigated here in the Drosophila wing using a combination of experiment and theory. Planar polarity arises during growth and PCP domains are initially oriented toward the well-characterized organizer regions that control growth and patterning. At pupal stages, the wing hinge contracts, subjecting wing-blade epithelial cells to anisotropic tension in the proximal-distal axis. This results in precise patterns of oriented cell elongation, cell rearrangement and cell division that elongate the blade proximo-distally and realign planar polarity with the proximal-distal axis. Mutation of the atypical Cadherin Dachsous perturbs the global polarity pattern by altering epithelial dynamics. This mechanism utilizes the cellular movements that sculpt tissues to align planar polarity with tissue shape. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Development
                Development
                The Company of Biologists
                0950-1991
                1477-9129
                November 28 2017
                December 01 2017
                November 28 2017
                December 01 2017
                : 144
                : 23
                : 4249-4260
                Article
                10.1242/dev.151282
                5769629
                29183938
                a6a0bd8b-ed07-4566-9104-e645eeea4970
                © 2017

                http://www.biologists.com/user-licence-1-1/

                History

                Comments

                Comment on this article