15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomarkers of systemic inflammation in farmers with musculoskeletal disorders; a plasma proteomic study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Farmers have an increased risk for musculoskeletal disorders (MSD) such as osteoarthritis of the hip, low back pain, and neck and upper limb complaints. The underlying mechanisms are not fully understood. Work-related exposures and inflammatory responses might be involved. Our objective was to identify plasma proteins that differentiated farmers with MSD from rural referents.

          Methods

          Plasma samples from 13 farmers with MSD and rural referents were included in the investigation. Gel based proteomics was used for protein analysis and proteins that differed significantly between the groups were identified by mass spectrometry.

          Results

          In total, 15 proteins differed significantly between the groups. The levels of leucine-rich alpha-2-glycoprotein, haptoglobin, complement factor B, serotransferrin, one isoform of kininogen, one isoform of alpha-1-antitrypsin, and two isoforms of hemopexin were higher in farmers with MSD than in referents. On the other hand, the levels of alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, vitamin D- binding protein, apolipoprotein A1, antithrombin, one isoform of kininogen, and one isoform of alpha-1-antitrypsin were lower in farmers than in referents. Many of the identified proteins are known to be involved in inflammation.

          Conclusions

          Farmers with MSD had altered plasma levels of protein biomarkers compared to the referents, indicating that farmers with MSD may be subject to a more systemic inflammation. It is possible that the identified differences of proteins may give clues to the biochemical changes occurring during the development and progression of MSD in farmers, and that one or several of these protein biomarkers might eventually be used to identify and prevent work-related MSD.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12891-016-1059-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Hemopexin: structure, function, and regulation.

          Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haptoglobin, an inflammation-inducible plasma protein.

            Sterile tissue injury or infection initiates a local inflammatory response that mobilizes a systemic acute phase reaction resulting in, among other things, the induction of genes encoding the acute phase plasma proteins (APPs). In all vertebrates, a common set of APPs is increased and exerts essential protective functions. Haptoglobin (HP), one of the major APPs, acts as a high-affinity hemoglobin-binding protein and antioxidant. Liver is the major site of HP synthesis; however, regulated, low level expression is also detected in other organs. Induction of the Hp gene is mediated by interleukin-6-type cytokines and is synergistically enhanced by glucocorticoids. Growth stimulation of hepatic cells in vivo or in vitro suppresses the Hp gene-inducing effects of inflammatory cytokines. Receptors for IL-6 cytokines mediate induction of the Hp gene by the transcription factors signal transducer and activator of transcription-3 (STAT3) and CAAT/enhancer binding protein beta (C/EBPbeta), but attenuate the stimulation through co-activated STAT5 and mitogen-activated protein kinases, ERK-1 and ERK-2. The specificity by which the related cytokines, IL-6, oncostatin M, and leukemia inhibitory factor, regulate Hp gene transcription is determined by the profile of the cytokine receptor subunits expressed on the target cells and the relative extents by which these receptors activate the intracellular signaling pathways. The current hypothesis is that HP exerts an anti-inflammatory activity and that by the degree with which HP attenuates the inflammatory process, including the production of IL-6 cytokines, it determines the level and duration of acute phase expression of the Hp gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification of Proteins from Interstitium of Trapezius Muscle in Women with Chronic Myalgia Using Microdialysis in Combination with Proteomics

              Background Microdialysis (MD) of the trapezius muscle has been an attractive technique to investigating small molecules and metabolites in chronic musculoskeletal pain in human. Large biomolecules such as proteins also cross the dialysis membrane of the catheters. In this study we have applied in vivo MD in combination with two dimensional gel electrophoresis (2-DE) and mass spectrometry to identify proteins in the extracellular fluid of the trapezius muscle. Materials and Methods Dialysate from women with chronic trapezius myalgia (TM; n = 37), women with chronic wide spread pain (CWP; n = 18) and healthy controls (CON; n = 22) was collected from the trapezius muscle using a catheter with a cut-off point of 100 kDa. Proteins were separated by two-dimensional gel electrophoresis and visualized by silver staining. Detected proteins were identified by nano liquid chromatography in combination with tandem mass spectrometry. Results Ninety-seven protein spots were identified from the interstitial fluid of the trapezius muscle; 48 proteins in TM and 30 proteins in CWP had concentrations at least two-fold higher or lower than in CON. The identified proteins pertain to several functional classes, e.g., proteins involved in inflammatory responses. Several of the identified proteins are known to be involved in processes of pain such as: creatine kinase, nerve growth factor, carbonic anhydrase, myoglobin, fatty acid binding protein and actin aortic smooth muscle. Conclusions In this study, by using in vivo microdialysis in combination with proteomics a large number of proteins in muscle interstitium have been identified. Several of the identified proteins were at least two-fold higher or lower in chronic pain patients. The applied techniques open up for the possibility of investigating protein changes associated with nociceptive processes of chronic myalgia.
                Bookmark

                Author and article information

                Contributors
                +46 101032381 , bijar.ghafouri@liu.se
                Journal
                BMC Musculoskelet Disord
                BMC Musculoskelet Disord
                BMC Musculoskeletal Disorders
                BioMed Central (London )
                1471-2474
                10 May 2016
                10 May 2016
                2016
                : 17
                : 206
                Affiliations
                [ ]Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, SE-581 85 Sweden
                [ ]Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Occupational and Environmental Medicine Center, Heart and Medicine Center, Region Östergötland, Linköping, Sweden
                [ ]Department of Research and Development, Region Kronoberg, Växjö, Sweden
                [ ]Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology Sections, Uppsala University, Uppsala, Sweden
                Article
                1059
                10.1186/s12891-016-1059-y
                4862124
                27160764
                a6b6a9e1-6e4a-4150-a4ae-737075f82e30
                © Ghafouri et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 January 2016
                : 3 May 2016
                Funding
                Funded by: The Swedish Farmers' Foundation for Agricultural Research
                Award ID: H0935072
                Award Recipient :
                Funded by: The Swedish Rheumatism Association
                Award ID: R-420491
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Orthopedics
                musculoskeletal disorder,farmers,proteomic,systemic inflammation,occupational medicine
                Orthopedics
                musculoskeletal disorder, farmers, proteomic, systemic inflammation, occupational medicine

                Comments

                Comment on this article