22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nuclear Factor Kappa B Activation Occurs in the Amnion Prior to Labour Onset and Modulates the Expression of Numerous Labour Associated Genes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFκB). In this study we characterised the level of NFκB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour.

          Methodology/Principal Findings

          We found that a proportion of women exhibit low or moderate NFκB activity while other women exhibit high levels of NFκB activity (n = 12). This activation process does not appear to involve classical pathways of NFκB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised non-activated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryonic development and tissue development.

          Conclusions/Significance

          Our results indicate that assessment of amnion NFκB activation is critical for accurate sample classification and subsequent interpretation of data. Collectively, our data suggest amnion activation is largely an inflammatory event that occurs in the amnion epithelial layer as a prelude to the onset of labour.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Functional discovery via a compendium of expression profiles.

          Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation.

            The eukaryotic transcription factor NF-kappa B plays a central role in the induced expression of human immunodeficiency virus type 1 and in many aspects of the genetic program mediating normal T-cell activation and growth. The nuclear activity of NF-kappa B is tightly regulated from the cytoplasmic compartment by an inhibitory subunit called I kappa B alpha. This cytoplasmic inhibitor is rapidly phosphorylated and degraded in response to a diverse set of NF-kappa B-inducing agents, including T-cell mitogens, proinflammatory cytokines, and viral transactivators such as the Tax protein of human T-cell leukemia virus type 1. To explore these I kappa B alpha-dependent mechanisms for NF-kappa B induction, we identified novel mutants of I kappa B alpha that uncouple its inhibitory and signal-transducing functions in human T lymphocytes. Specifically, removal of the N-terminal 36 amino acids of I kappa B alpha failed to disrupt its ability to form latent complexes with NF-kappa B in the cytoplasm. However, this deletion mutation prevented the induced phosphorylation, degradative loss, and functional release of I kappa B alpha from NF-kappa B in Tax-expressing cells. Alanine substitutions introduced at two serine residues positioned within this N-terminal regulatory region of I kappa B alpha also yielded constitutive repressors that escaped from Tax-induced turnover and that potently inhibited immune activation pathways for NF-kappa B induction, including those initiated from antigen and cytokine receptors. In contrast, introduction of a phosphoserine mimetic at these sites rectified this functional defect, a finding consistent with a causal linkage between the phosphorylation status and proteolytic stability of this cytoplasmic inhibitor. Together, these in vivo studies define a critical signal response domain in I kappa B alpha that coordinately controls the biologic activities of I kappa B alpha and NF-kappa B in response to viral and immune stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of nuclear factor kappa B in human labour.

              Preterm birth remains the leading cause of perinatal mortality and morbidity, largely as a result of a poor understanding of the precise mechanisms controlling labour onset in humans. Inflammation has long been recognised as a key feature of both preterm and term labour, with an influx of inflammatory cells into the uterus and elevated levels of pro-inflammatory cytokines observed during parturition. Nuclear factor kappa B (NF-kappaB) is a transcription factor family classically associated with inflammation. Accumulating evidence points to a role for NF-kappaB in the physiology and pathophysiology of labour. NF-kappaB activity increases with labour onset and is central to multiple prolabour pathways. Premature or aberrant activation of NF-kappaB may thus contribute to preterm labour. The current understanding of NF-kappaB in the context of human labour is discussed here.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                2 April 2012
                : 7
                : 4
                : e34707
                Affiliations
                [1 ]Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, London, United Kingdom
                [2 ]Department of Obstetrics and Gynaecology, St. Mary's Hospital, London, United Kingdom
                VU University Medical Center, Netherlands
                Author notes

                Conceived and designed the experiments: SL PRB. Performed the experiments: SL YL SK. Analyzed the data: SL DAM PRB. Contributed reagents/materials/analysis tools: SL VT TGT PRB. Wrote the paper: DAM SL PRB.

                Article
                PONE-D-12-02010
                10.1371/journal.pone.0034707
                3317641
                22485186
                a6bd5e5e-4437-4ecb-8c6c-d28c4ed85308
                Lim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 January 2012
                : 5 March 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Genomics
                Genome Analysis Tools
                Microbiology
                Immunity
                Medicine
                Obstetrics and Gynecology
                Pregnancy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article