34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomerase defers the onset of telomere damage-induced signaling and cellular senescence by adding DNA onto chromosome ends. The ability of telomerase to elongate single-stranded telomeric DNA depends on the reverse transcriptase domain of TERT, and also relies on protein:DNA contacts outside the active site. We purified the N-terminus of human TERT (hTEN) from Escherichia coli, and found that it binds DNA with a preference for telomeric sequence of a certain length and register. hTEN interacted with the C-terminus of hTERT in trans to reconstitute enzymatic activity in vitro. Mutational analysis of hTEN revealed that amino acids Y18 and Q169 were required for telomerase activity in vitro, but not for the interaction with telomere DNA or the C-terminus. These mutants did not reconstitute telomerase activity in cells, maintain telomere length, or extend cellular lifespan. In addition, we found that T116/T117/S118, while dispensable in vitro, were required for cellular immortalization. Thus, the interactions of hTEN with telomere DNA and the C-terminus of hTERT are functionally separable from the role of hTEN in telomere elongation activity in vitro and in vivo, suggesting other roles for the protein and nucleic acid interactions of hTEN within, and possibly outside, the telomerase catalytic core.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Extension of life-span by introduction of telomerase into normal human cells.

          Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.

            We have found a novel activity in Tetrahymena cell free extracts that adds tandem TTGGGG repeats onto synthetic telomere primers. The single-stranded DNA oligonucleotides (TTGGGG)4 and TGTGTGGGTGTGTGGGTGTGTGGG, consisting of the Tetrahymena and yeast telomeric sequences respectively, each functioned as primers for elongation, while (CCCCAA)4 and two nontelomeric sequence DNA oligomers did not. Efficient synthesis of the TTGGGG repeats depended only on addition of micromolar concentrations of oligomer primer, dGTP, and dTTP to the extract. The activity was sensitive to heat and proteinase K treatment. The repeat addition was independent of both endogenous Tetrahymena DNA and the endogenous alpha-type DNA polymerase; and a greater elongation activity was present during macronuclear development, when a large number of telomeres are formed and replicated, than during vegetative cell growth. We propose that the novel telomere terminal transferase is involved in the addition of telomeric repeats necessary for the replication of chromosome ends in eukaryotes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.

              Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2010
                23 December 2009
                24 December 2009
                : 38
                : 6
                : 2019-2035
                Affiliations
                1Department of Medical Biophysics, University of Toronto, 2Campbell Family Institute for Breast Cancer Research, 3Ontario Cancer Institute, University Health Network, Toronto, Ontario, M5G 2C1, Canada and 4Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 131 650 7113; Fax: +44 131 650 5379; Email: l.harrington@ 123456ed.ac.uk
                Article
                gkp1160
                10.1093/nar/gkp1160
                2847226
                20034955
                a6c5a848-e4d9-4b95-b771-853488d5e2bf
                © The Author(s) 2009. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2009
                : 20 November 2009
                : 24 November 2009
                Categories
                Nucleic Acid Enzymes

                Genetics
                Genetics

                Comments

                Comment on this article