1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Endogenous Hormones on the Flowering and Fruiting of Glycyrrhiza uralensis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although endogenous hormones play an important role in flower bud differentiation and seed-filling, their effects on the flowering and fruiting of Glycyrrhiza uralensis Fisch. remain unknown. In the present study, we investigate the differences in the levels of endogenous hormones gibberellic acid (GA), abscisic acid (ABA), zeatin riboside (ZR), and indoleacetic acid (IAA) between the fruiting and seedless plants of G. uralensis Fisch. at different growth stages. We also determine the correlations of the endogenous hormone with the rates of flower and fruit falling, rate of empty seeds, rate of shrunken grains, and thousand kernel weight (TKW). The results demonstrate that the IAA and ZR levels of the flowering plants are significantly higher than those of the nonflowering plants at the flower bud differentiation stage. The GA and ABA levels of exfoliated inflorescence plants are considerably higher than those of the flowering and fruiting plants; the rates of falling flowers and fruit are negatively correlated with the IAA level and positively correlated with the ABA level. The ABA content of nonflowering plants is significantly higher than that of fruiting plants. The ZR:GA and IAA:ABA ratios are significantly positively correlated with TKW. The IAA:GA and IAA:ABA ratios are significantly negatively correlated with the rates of empty and shrunken seeds. Thus, we speculate that high IAA and ZR contents are good for flower bud differentiation and seed-filling, and low ABA and ZR contents are beneficial to flower bud development and seed-filling.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Gibberellin as a factor in floral regulatory networks.

          Gibberellins (GAs) function not only to promote the growth of plant organs, but also to induce phase transitions during development. Their involvement in flower initiation in long-day (LD) and biennial plants is well established and there is growing insight into the mechanisms by which floral induction is achieved. The extent to which GAs mediate the photoperiodic stimulus to flowering in LD plants is, with a few exceptions, less clear. Despite evidence for photoperiod-enhanced GA biosynthesis in leaves of many LD plants, through up-regulation of GA 20-oxidase gene expression, a function for GAs as transmitted signals from leaves to apices in response to LD has been demonstrated only in Lolium species. In Arabidopsis thaliana, as one of four quantitative floral pathways, GA signalling has a relatively minor influence on flowering time in LD, while in SD, in the absence of the photoperiod flowering pathway, the GA pathway assumes a major role and becomes obligatory. Gibberellins promote flowering in Arabidopsis through the activation of genes encoding the floral integrators SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), LEAFY (LFY), and FLOWERING LOCUS T (FT) in the inflorescence and floral meristems, and in leaves, respectively. Although GA signalling is not required for floral organ specification, it is essential for the normal growth and development of these organs. The sites of GA production and action within flowers, and the signalling pathways involved are beginning to be revealed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin.

            Glycyrrhizin, a triterpenoid saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton β-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and glycosyl transfers to the C-3 hydroxyl group. We previously reported the identification of a cytochrome P450 monooxygenase (P450) gene encoding β-amyrin 11-oxidase (CYP88D6) as the initial P450 gene in glycyrrhizin biosynthesis. In this study, a second relevant P450 (CYP72A154) was identified and shown to be responsible for C-30 oxidation in the glycyrrhizin pathway. CYP72A154 expressed in an engineered yeast strain that endogenously produces 11-oxo-β-amyrin (a possible biosynthetic intermediate between β-amyrin and glycyrrhizin) catalyzed three sequential oxidation steps at C-30 of 11-oxo-β-amyrin supplied in situ to produce glycyrrhetinic acid, a glycyrrhizin aglycone. Furthermore, CYP72A63 of Medicago truncatula, which has high sequence similarity to CYP72A154, was able to catalyze C-30 oxidation of β-amyrin. These results reveal a function of CYP72A subfamily proteins as triterpene-oxidizing enzymes and provide a genetic tool for engineering the production of glycyrrhizin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress?

              Recent developments in defining the functional basis of abscisic acid in regulating growth, development and stress response have provided essential components for its actions. We are yet to envision the impact of how differential levels of ABA influence plant growth across life cycle. Here we reviewed the information arising from the recent unprecedented advancement made in the field of ABA signaling operative under calcium-dependent and calcium-independent pathways mediating the transcriptional reprogramming under short-term stress response. Advancement made in the field of ABA receptors and transporters has started to fill major gaps in our understanding of the ABA action. However, ABA just not only regulates guard cell movement but impacts other reproductive tissue development through massive transcriptional reprogramming events affecting various stages of the plant life cycle. Therefore many questions still remain unanswered. One such intriguing question is the contradictory role of ABA known to mediate two opposite faces of the coin: regulating abiotic stress tolerance and imparting growth retardation. In this review, we critically assessed the impact of substantial elevated levels of ABA on impairment of photosynthesis and growth alteration and its subsequent influence on seed yield formation. Excess biosynthesis of ABA under stress may deprive the same precursor pool necessary for chlorophyll biosynthesis pathway, thereby triggering growth retardation. Further, we emphasized the importance of ABA homeostasis for integrating stress cues towards coordinating sustainable plant growth. Also we provided a pertinent background on ABA biosynthesis and degradation pathway manipulation to highlight the genes and processes used in genetic engineering of plants for changed ABA content. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                17 November 2019
                November 2019
                : 8
                : 11
                : 519
                Affiliations
                [1 ]Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; yb51598@ 123456126.com
                [2 ]Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; jcui@ 123456implad.ac.cn (J.C.); hc891215@ 123456126.com (C.H.); cxy1033@ 123456163.com (X.C.)
                [3 ]School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; 602036@ 123456bucm.edu.cn (J.H.); wbli92@ 123456126.com (W.L.)
                Author notes
                [* ]Correspondence: limin@ 123456cdutcm.edu.cn (M.L.); wqwang@ 123456implad.ac.cn (W.W.); Tel.: +86-10-5783-3145 (M.L. & W.W.)
                Author information
                https://orcid.org/0000-0002-3339-083X
                Article
                plants-08-00519
                10.3390/plants8110519
                6918285
                31744255
                a6c98a7a-6515-42cb-93f2-a5f2e5c1631a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 October 2019
                : 15 November 2019
                Categories
                Article

                glycyrrhiza uralensis fisch.,flowering,fruiting,gibberellic acid,abscisic acid,zeatin riboside,indoleacetic acid

                Comments

                Comment on this article