97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Monocyte Adhesion to Endothelial Cells and Attenuation of Atherosclerotic Lesion by a Glucagon-like Peptide-1 Receptor Agonist, Exendin-4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Exogenous administration of glucagon-like peptide-1 (GLP-1) or GLP-1 receptor agonists such as an exendin-4 has direct beneficial effects on the cardiovascular system. However, their effects on atherosclerogenesis have not been elucidated. The aim of this study was to investigate the effects of GLP-1 on accumulation of monocytes/macrophages on the vascular wall, one of the earliest steps in atherosclerogenesis.

          RESEARCH DESIGN AND METHODS

          After continuous infusion of low (300 pmol · kg −1 · day −1) or high (24 nmol · kg −1 · day −1) dose of exendin-4 in C57BL/6 or apolipoprotein E–deficient mice (apoE −/−), we evaluated monocyte adhesion to the endothelia of thoracic aorta and arteriosclerotic lesions around the aortic valve. The effects of exendin-4 were investigated in mouse macrophages and human monocytes.

          RESULTS

          Treatment with exendin-4 significantly inhibited monocytic adhesion in the aortas of C57BL/6 mice without affecting metabolic parameters. In apoE −/− mice, the same treatment reduced monocyte adhesion to the endothelium and suppressed atherosclerogenesis. In vitro treatment of mouse macrophages with exendin-4 suppressed lipopolysaccharide-induced mRNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1, and suppressed nuclear translocation of p65, a component of nuclear factor-κB. This effect was reversed by either MDL-12330A, a cAMP inhibitor or PKI 14-22, a protein kinase A–specific inhibitor. In human monocytes, exendin-4 reduced the expression of CD11b.

          CONCLUSIONS

          Our data suggested that GLP-1 receptor agonists reduced monocyte/macrophage accumulation in the arterial wall by inhibiting the inflammatory response in macrophages, and that this effect may contribute to the attenuation of atherosclerotic lesion by exendin-4.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways.

          The glucagon-like peptide 1 receptor (GLP-1R) is believed to mediate glucoregulatory and cardiovascular effects of the incretin hormone GLP-1(7-36) (GLP-1), which is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to GLP-1(9-36), a truncated metabolite generally thought to be inactive. Novel drugs for the treatment of diabetes include analogues of GLP-1 and inhibitors of DPP-4; however, the cardiovascular effects of distinct GLP-1 peptides have received limited attention. Here, we show that endothelium and cardiac and vascular myocytes express a functional GLP-1R as GLP-1 administration increased glucose uptake, cAMP and cGMP release, left ventricular developed pressure, and coronary flow in isolated mouse hearts. GLP-1 also increased functional recovery and cardiomyocyte viability after ischemia-reperfusion injury of isolated hearts and dilated preconstricted arteries from wild-type mice. Unexpectedly, many of these actions of GLP-1 were preserved in Glp1r(-/-) mice. Furthermore, GLP-1(9-36) administration during reperfusion reduced ischemic damage after ischemia-reperfusion and increased cGMP release, vasodilatation, and coronary flow in wild-type and Glp1r(-/-) mice, with modest effects on glucose uptake. Studies using a DPP-4-resistant GLP-1R agonist and inhibitors of DPP-4 and nitric oxide synthase showed that the effects of GLP-1(7-36) were partly mediated by GLP-1(9-36) through a nitric oxide synthase-requiring mechanism that is independent of the known GLP-1R. These data describe cardioprotective actions of GLP-1(7-36) mediated through the known GLP-1R and novel cardiac and vascular actions of GLP-1(7-36) and its metabolite GLP-1(9-36) independent of the known GLP-1R. Our data suggest that the extent to which GLP-1 is metabolized to GLP-1(9-36) may have functional implications in the cardiovascular system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.

            VCAM-1 and ICAM-1 are endothelial adhesion molecules of the Ig gene superfamily that may participate in atherogenesis by promoting monocyte accumulation in the arterial intima. Both are expressed in regions predisposed to atherosclerosis and at the periphery of established lesions, while ICAM-1 is also expressed more broadly. To evaluate functions of VCAM-1 in chronic disease, we disrupted its fourth Ig domain, producing the murine Vcam1(D4D) allele. VCAM-1(D4D) mRNA and protein were reduced to 2-8% of wild-type allele (Vcam1(+)) levels but were sufficient to partially rescue the lethal phenotype of VCAM-1-null embryos. After crossing into the LDL receptor-null background, Vcam1(+/+) and Vcam1(D4D/D4D) paired littermates were generated from heterozygous intercrosses and fed a cholesterol-enriched diet for 8 weeks. The area of early atherosclerotic lesions in the aorta, quantified by en face oil red O staining, was reduced significantly in Vcam1(D4D/D4D) mice, although cholesterol levels, lipoprotein profiles, and numbers of circulating leukocytes were comparable to wild-type. In contrast, deficiency of ICAM-1 either alone or in combination with VCAM-1 deficiency did not alter nascent lesion formation. Therefore, although expression of both VCAM-1 and ICAM-1 is upregulated in atherosclerotic lesions, our data indicate that VCAM-1 plays a dominant role in the initiation of atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion.

              Glucose-insulin-potassium infusions are beneficial in uncomplicated patients with acute myocardial infarction (AMI) but are of unproven efficacy in AMI with left ventricular (LV) dysfunction because of volume requirements associated with glucose infusion. Glucagon-like peptide-1 (GLP-1) is a naturally occurring incretin with both insulinotropic and insulinomimetic properties that stimulate glucose uptake without the requirements for concomitant glucose infusion. We investigated the safety and efficacy of a 72-hour infusion of GLP-1 (1.5 pmol/kg per minute) added to background therapy in 10 patients with AMI and LV ejection fraction (EF) 1.63+/-0.09, P 2.02+/-0.11, P<0.01) compared with control subjects. The benefits of GLP-1 were independent of AMI location or history of diabetes. GLP-1 was well tolerated, with only transient gastrointestinal effects. When added to standard therapy, GLP-1 infusion improved regional and global LV function in patients with AMI and severe systolic dysfunction after successful primary angioplasty.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                April 2010
                12 January 2010
                : 59
                : 4
                : 1030-1037
                Affiliations
                [1] 1Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan;
                [2] 2Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan;
                [3] 3Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan;
                [4] 4Center for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo, Japan.
                Author notes
                Corresponding author: Tomoya Mita, tom-m@ 123456juntendo.ac.jp , or Hirotaka Watada, hwatada@ 123456med.juntendo.ac.jp .
                Article
                1694
                10.2337/db09-1694
                2844811
                20068138
                a6cd3760-117d-425f-a08a-1df79885427a
                © 2010 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 17 November 2009
                : 28 December 2009
                Categories
                Original Article
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article