74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence

      research-article
      1 , 2 , * , 3 , 1 , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Paleontological evidence to date the tree of life.

          The role of fossils in dating the tree of life has been misunderstood. Fossils can provide good "minimum" age estimates for branches in the tree, but "maximum" constraints on those ages are poorer. Current debates about which are the "best" fossil dates for calibration move to consideration of the most appropriate constraints on the ages of tree nodes. Because fossil-based dates are constraints, and because molecular evolution is not perfectly clock-like, analysts should use more rather than fewer dates, but there has to be a balance between many genes and few dates versus many dates and few genes. We provide "hard" minimum and "soft" maximum age constraints for 30 divergences among key genome model organisms; these should contribute to better understanding of the dating of the animal tree of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates.

            The uneven distribution of species richness is a fundamental and unexplained pattern of vertebrate biodiversity. Although species richness in groups like mammals, birds, or teleost fishes is often attributed to accelerated cladogenesis, we lack a quantitative conceptual framework for identifying and comparing the exceptional changes of tempo in vertebrate evolutionary history. We develop MEDUSA, a stepwise approach based upon the Akaike information criterion for detecting multiple shifts in birth and death rates on an incompletely resolved phylogeny. We apply MEDUSA incompletely to a diversity tree summarizing both evolutionary relationships and species richness of 44 major clades of jawed vertebrates. We identify 9 major changes in the tempo of gnathostome diversification; the most significant of these lies at the base of a clade that includes most of the coral-reef associated fishes as well as cichlids and perches. Rate increases also underlie several well recognized tetrapod radiations, including most modern birds, lizards and snakes, ostariophysan fishes, and most eutherian mammals. In addition, we find that large sections of the vertebrate tree exhibit nearly equal rates of origination and extinction, providing some of the first evidence from molecular data for the importance of faunal turnover in shaping biodiversity. Together, these results reveal living vertebrate biodiversity to be the product of volatile turnover punctuated by 6 accelerations responsible for >85% of all species as well as 3 slowdowns that have produced "living fossils." In addition, by revealing the timing of the exceptional pulses of vertebrate diversification as well as the clades that experience them, our diversity tree provides a framework for evaluating particular causal hypotheses of vertebrate radiations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Nomenclature for Vertebral Fossae in Sauropods and Other Saurischian Dinosaurs

              Background The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs), like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity) and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity). Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae), but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis. Methodology/Principal Findings We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses). We standardize the naming process by creating tripartite names from “primary landmarks,” which form the zygodiapophyseal table, “secondary landmarks,” which orient with respect to that table, and “tertiary landmarks,” which further delineate a given fossa. Conclusions/Significance The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental origin or phylogenetic distribution.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                27 February 2014
                : 9
                : 2
                : e89165
                Affiliations
                [1 ]School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
                [2 ]GeoBio-Center, Ludwig-Maximilian-Universität München, Munich, Germany
                [3 ]Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
                Institute of Biochemistry and Biology, Germany
                Author notes

                Competing Interests: Richard Butler is a PLOS ONE Editorial Board member. However, this does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: MDE RJB TMS. Performed the experiments: MDE TMS. Analyzed the data: MDE TMS. Contributed reagents/materials/analysis tools: MDE TMS RJB. Wrote the paper: MDE RJB TMS.

                Article
                PONE-D-13-37110
                10.1371/journal.pone.0089165
                3937355
                24586565
                a6ce3d40-2761-49c4-b1ba-a800d5e5e7c0
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 September 2013
                : 14 January 2014
                Page count
                Pages: 36
                Funding
                Funding was provided by the Synthesys Programm (to MDE), DFG Emmy Noether Programme (BU 2587/3-1 to RJB), and Swiss National Science Foundation (31003A_146440/1 to TS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and physiology
                Evolutionary biology
                Evolutionary systematics
                Phylogenetics
                Forms of evolution
                Divergent evolution
                Paleontology
                Vertebrate paleontology
                Paleontology
                Biogeography
                Vertebrate paleontology
                Zoology
                Earth sciences
                Paleontology
                Biogeography
                Vertebrate paleontology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article