23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic Approach for the Formulation and Optimization of Solid Lipid Nanoparticles of Efavirenz by High Pressure Homogenization Using Design of Experiments for Brain Targeting and Enhanced Bioavailability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nonnucleoside reverse transcriptase inhibitors, used for the treatment of HIV infections, are reported to have low bioavailability pertaining to high first-pass metabolism, high protein binding, and enzymatic metabolism. They also show low permeability across blood brain barrier. The CNS is reported to be the most important HIV reservoir site. In the present study, solid lipid nanoparticles of efavirenz were prepared with the objective of providing increased permeability and protection of drug due to biocompatible lipidic content and nanoscale size and thus developing formulation having potential for enhanced bioavailability and brain targeting. Solid lipid nanoparticles were prepared by high pressure homogenization technique using a systematic approach of design of experiments (DoE) and evaluated for particle size, polydispersity index, zeta potential, and entrapment efficiency. Particles of average size 108.5 nm having PDI of 0.172 with 64.9% entrapment efficiency were produced. Zeta potential was found to be −21.2 mV and the formulation was found stable. The in-vivo pharmacokinetic studies revealed increased concentration of the drug in brain, as desired, when administered through intranasal route indicating its potential for an attempt towards complete eradication of HIV and cure of HIV-infected patients.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles.

          Clozapine, a lipophilic antipsychotic drug, has very poor oral bioavailability (<27%) due to first pass effect. Solid lipid nanoparticle (SLN) delivery systems of clozapine have been developed using various triglycerides (trimyristin, tripalmitin and tristearin), soylecithin 95%, poloxamer 188 and charge modifier stearylamine. Hot homogenization of melted lipids and aqueous phase followed by ultrasonication at temperature above the melting point of lipid was used to prepare SLN dispersions. Particle size and zeta potential were measured by photon correlation spectroscopy (PCS) using Malvern Zetasizer. Process and formulation variables have been studied and optimized. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies were performed to characterize state of drug and lipid modification. In vitro release studies were performed in 0.1 N HCl, double-distilled water and phosphate buffer, pH 7.4, using modified Franz diffusion cell. Stable SLN formulations of clozapine having mean size range of 60-380 nm and zeta potential range of -23 to +33 mV were developed. More than 90% clozapine was entrapped in SLN. DSC and PXRD analysis showed that clozapine is dispersed in SLN in an amorphous state. The release pattern of drug is analyzed and found to follow Weibull and Higuchi equations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation

            In the present study, haloperidol (HP)-loaded solid lipid nanoparticles (SLNs) were prepared to enhance the uptake of HP to brain via intranasal (i.n.) delivery. SLNs were prepared by a modified emulsification–diffusion technique and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release, and stability. All parameters were found to be in an acceptable range. In vitro drug release was found to be 94.16±4.78% after 24 h and was fitted to the Higuchi model with a very high correlation coefficient (R 2=0.9941). Pharmacokinetics studies were performed on albino Wistar rats and the concentration of HP in brain and blood was measured by high performance liquid chromatography. The brain/blood ratio at 0.5 h for HP-SLNs i.n., HP sol. i.n. and HP sol. i.v. was 1.61, 0.17 and 0.031, respectively, indicating direct nose-to-brain transport, bypassing the blood–brain barrier. The maximum concentration (C max) in brain achieved from i.n. administration of HP-SLNs (329.17±20.89 ng/mL, T max 2 h) was significantly higher than that achieved after i.v. (76.95±7.62 ng/mL, T max 1 h), and i.n. (90.13±6.28 ng/mL, T max 2 h) administration of HP sol. The highest drug-targeting efficiency (2362.43%) and direct transport percentage (95.77%) was found with HP-SLNs as compared to the other formulations. Higher DTE (%) and DTP (%) suggest that HP-SLNs have better brain targeting efficiency as compared to other formulations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM?

              Despite recent advances in tumor imaging and chemoradiotherapy, the median overall survival of patients diagnosed with glioblastoma multiforme does not exceed 15 months. Infiltration of glioma cells into the brain parenchyma, and the blood-brain barrier are important hurdles to further increase the efficacy of classic therapeutic tools. Local administration methods of therapeutic agents, such as convection enhanced delivery and intracerebral injections, are often associated with adverse events. The intranasal pathway has been proposed as a non-invasive alternative route to deliver therapeutics to the brain. This route will bypass the blood-brain barrier and limit systemic side effects. Upon presentation at the nasal cavity, pharmacological agents reach the brain via the olfactory and trigeminal nerves. Recently, formulations have been developed to further enhance this nose-to-brain transport, mainly with the use of nanoparticles. In this review, the focus will be on formulations of pharmacological agents, which increase the nasal permeation of hydrophilic agents to the brain, improve delivery at a constant and slow release rate, protect therapeutics from degradation along the pathway, increase mucoadhesion, and facilitate overall nasal transport. A mounting body of evidence is accumulating that the underexplored intranasal delivery route might represent a major breakthrough to combat glioblastoma.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2017
                23 January 2017
                : 2017
                : 5984014
                Affiliations
                1Department of Pharmaceutical Technology, Parul University, Vadodara, Gujarat, India
                2Department of Pharmaceutics, Oxbridge College of Pharmacy, Bangalore, India
                3Department of Pharmaceutics, A. R. College of Pharmacy, Vallabh Vidyanagar, Anand, Gujarat, India
                4Pharmacy Department, Faculty of Technology and Engineering, M. S. University of Baroda, Gujarat, India
                5Department of Chemistry & Biochemistry, Laurentian University, Greater Sudbury, ON, Canada
                Author notes
                *Abdelwahab Omri: aomri@ 123456laurentian.ca

                Academic Editor: Sami M. Nazzal

                Author information
                http://orcid.org/0000-0002-4093-5762
                Article
                10.1155/2017/5984014
                5294220
                a6d16839-a992-43ba-a21c-1d1caa1a4770
                Copyright © 2017 Shweta Gupta et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 July 2016
                : 4 November 2016
                : 23 November 2016
                Categories
                Research Article

                Comments

                Comment on this article