16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In systemic sclerosis (SSc), autoantibodies provide the most accurate tool to predict the disease subset and pattern of organ involvement. Scleroderma autoantibodies target nucleic acids or DNA/RNA-binding proteins, thus SSc immune complexes (ICs) can embed nucleic acids. Our working hypothesis envisaged that ICs containing scleroderma-specific autoantibodies might elicit proinflammatory and profibrotic effects in skin fibroblasts.

          Methods

          Fibroblasts were isolated from skin biopsies obtained from healthy subjects and patients with diffuse cutaneous SSc (dcSSc). ICs were purified by polyethylene-glycol precipitation from sera of SSc patients bearing different autoantibodies. ICs from patients with systemic lupus erythematosus (SLE) and primary anti-phospholipid syndrome (PAPS) and from normal healthy subjects (NHS) were used as controls. After incubation with ICs, fibroblasts were evaluated for ICAM-1 expression, interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase (MMP)-2, tumor growth factor (TGF)-β1 and Pro-CollagenIα1 secretion, collagen (col)Iα1, mmp-1, toll-like receptor (tlr)2, tlr3, tlr4, tlr7, tlr8, tlr9, interferon (ifn)-α, ifn-β and endothelin-1 mRNA, and NFκB, p38MAPK and SAPK-JNK activation rate. Experiments were also performed after pretreatment with DNase I/RNase and NFκB/p38MAPK inhibitors.

          Results

          The antigenic reactivity for each SSc-IC mirrored the corresponding serum autoantibody specificity, while no positivity was observed in NHS-ICs or sera. SSc-ICs but not NHS-ICs increased ICAM-1 expression, stimulated IL-6, IL-8, MMP-2, MCP-1, TGF-β1 and Pro-CollagenIα1 secretion, upregulated et-1, ifn-α, ifn-β, tlr2, tlr3 and tlr4, and activated NFκB, p38MAPK and SAPK-JNK. tlr9 was significantly upregulated by ARA-ICs, mmp-1 was significantly induced by ACA-ICs whereas colIα1 was not modulated by any SSc-ICs. SLE-ICs and PAPS-ICs significantly upregulated MMP-2 and activated NFκB, p38MAPK and SAPK-JNK. SLE-ICs and PAPS-ICs did not affect colIα1, mmp-1 and Pro-CollagenIα1. DNase I and RNase treatment significantly reduced the upregulation of study mediators induced by SSc-ICs. Pretreatment with NFκB/p38MAPK inhibitors suggested that response to anti-Th/To-ICs was preferentially mediated by p38MAPK whereas ATA-ICs, ACA-ICs and ARA-ICs engaged both mediators. In dcSSc fibroblasts, stimulation with SSc-ICs and NHS-ICs upregulated IL-6 and IL-8.

          Conclusions

          These data provide the first demonstration of the proinflammatory and profibrotic effects of SSc-ICs on fibroblasts, suggesting the potential pathogenicity of SSc autoantibodies. These effects might be mediated by Toll-like receptors via the interaction with nucleic acid fragments embedded in SSc-ICs.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found

          Systemic sclerosis.

          Systemic sclerosis, also called scleroderma, is an immune-mediated rheumatic disease that is characterised by fibrosis of the skin and internal organs and vasculopathy. Although systemic sclerosis is uncommon, it has a high morbidity and mortality. Improved understanding of systemic sclerosis has allowed better management of the disease, including improved classification and more systematic assessment and follow-up. Additionally, treatments for specific complications have emerged and a growing evidence base supports the use of immune suppression for the treatment of skin and lung fibrosis. Some manifestations of the disease, such as scleroderma renal crisis, pulmonary arterial hypertension, digital ulceration, and gastro-oesophageal reflux, are now treatable. However, the burden of non-lethal complications associated with systemic sclerosis is substantial and is likely to become more of a challenge. Here, we review the clinical features of systemic sclerosis and describe the best practice approaches for its management. Furthermore, we identify future areas for development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HMGB1 signals through toll-like receptor (TLR) 4 and TLR2.

            In response to bacterial endotoxin (e.g., LPS) or endogenous proinflammatory cytokines (e.g., TNF and IL-1beta), innate immune cells release HMGB1, a late cytokine mediator of lethal endotoxemia and sepsis. The delayed kinetics of HMGB1 release makes it an attractive therapeutic target with a wider window of opportunity for the treatment of lethal systemic inflammation. However, the receptor(s) responsible for HMGB1-mediated production of proinflammatory cytokines has not been well characterized. Here we demonstrate that in human whole blood, neutralizing antibodies against Toll-like receptor 4 (TLR4, but not TLR2 or receptor for advanced glycation end product) dose-dependently attenuate HMGB1-induced IL-8 release. Similarly, in primary human macrophages, HMGB1-induced TNF release is dose-dependently inhibited by anti-TLR4 antibodies. In primary macrophages from knockout mice, HMGB1 activates significantly less TNF release in cells obtained from MyD88 and TLR4 knockout mice as compared with cells from TLR2 knockout and wild-type controls. However, in human embryonic kidney 293 cells transfected with TLR2 or TLR4, HMGB1 effectively induces IL-8 release only from TLR2 overexpressing cells. Consistently, anti-TLR2 antibodies dose-dependently attenuate HMGB1-induced IL-8 release in human embryonic kidney/TLR2-expressing cells and markedly reduce HMGB1 cell surface binding on murine macrophage-like RAW 264.7 cells. Taken together, our data suggest that there is a differential usage of TLR2 and TLR4 in HMGB1 signaling in primary cells and in established cell lines, adding complexity to studies of HMGB1 signaling which was not previously expected.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antiphospholipid syndrome

                Bookmark

                Author and article information

                Contributors
                raschi@auxologico.it
                003902619112554 , cecilia.chighizola@unimi.it
                l.cesana2@gmail.com
                daniela.privitera@unimi.it
                francesca.ingegnoli@unimi.it
                claudio.mastaglio@gmail.com
                pierluigi.meroni@unimi.it
                maria.borghi@unimi.it
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                29 August 2018
                29 August 2018
                2018
                : 20
                : 187
                Affiliations
                [1 ]ISNI 0000 0004 1757 9530, GRID grid.418224.9, Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, ; Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
                [2 ]ISNI 0000 0004 1757 2822, GRID grid.4708.b, Department of Clinical Sciences and Community Health, , University of Milan, ; Via Festa del Perdono 7, 20122 Milan, Italy
                [3 ]ISNI 0000 0004 1757 9530, GRID grid.418224.9, Allergology, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, ; Piazzale Brescia 20, 20149 Milan, Italy
                [4 ]Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122 Milan, Italy
                [5 ]Rheumatology Unit, Ospedale Moriggia-Pelascini, Via Pelascini 3, 22015 Gravedona, Como Italy
                Author information
                http://orcid.org/0000-0002-3787-9632
                Article
                1689
                10.1186/s13075-018-1689-6
                6116570
                30157947
                a6db0c6b-f467-4170-885f-6fb9de30df3d
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 February 2018
                : 29 July 2018
                Funding
                Funded by: IRCCS Istituto Auxologico Italiano
                Award ID: Ricerca Corrente 2013
                Award Recipient :
                Funded by: University of Milan, Department of Clinical Sciences and Community Health
                Award ID: Progetto Azione A Giovani Ricercatori
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Orthopedics
                systemic sclerosis,autoantibodies,immune complexes,toll-like receptors,fibroblasts,fibrosis,inflammation

                Comments

                Comment on this article