Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Huntington's disease is a four-repeat tauopathy with tau nuclear rods

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An imbalance of tau isoforms containing either three or four microtubule-binding repeats causes frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) in families with intronic mutations in the MAPT gene. Here we report equivalent imbalances at the mRNA and protein levels and increased total tau levels in the brains of subjects with Huntington's disease (HD) together with rod-like tau deposits along neuronal nuclei. These tau nuclear rods show an ordered filamentous ultrastructure and can be found filling the neuronal nuclear indentations previously reported in HD brains. Finally, alterations in serine/arginine-rich splicing factor-6 coincide with tau missplicing, and a role of tau in HD pathogenesis is evidenced by the attenuation of motor abnormalities of mutant HTT transgenic mice in tau knockout backgrounds.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: not found
          • Article: not found

          A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes

           M. MacDonald (1993)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17.

            Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed Pick's disease. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon 10. The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10. This causes more frequent usage of the 5' splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.

              Huntington's disease (HD) is one of an increasing number of neurodegenerative disorders caused by a CAG/polyglutamine repeat expansion. Mice have been generated that are transgenic for the 5' end of the human HD gene carrying (CAG)115-(CAG)150 repeat expansions. In three lines, the transgene is ubiquitously expressed at both mRNA and protein level. Transgenic mice exhibit a progressive neurological phenotype that exhibits many of the features of HD, including choreiform-like movements, involuntary stereotypic movements, tremor, and epileptic seizures, as well as nonmovement disorder components. This transgenic model will greatly assist in an eventual understanding of the molecular pathology of HD and may open the way to the testing of intervention strategies.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                August 2014
                July 20 2014
                August 2014
                : 20
                : 8
                : 881-885
                Article
                10.1038/nm.3617
                25038828
                © 2014

                http://www.springer.com/tdm

                Comments

                Comment on this article