46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Renormalizability of the Dirac Equation in Torsion-Gravity with Non-Minimal Coupling

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We will consider the torsional completion of gravity for a background filled with Dirac matter fields, studying what happens when fermionic non-minimal coupling is taken into account: we will show that, although non-minimal couplings are usually disregarded because of their ill-defined behaviour in ultraviolet regimes, this is due to the fact that torsion is commonly neglected, whereas when torsion is not left aside, even non-minimal couplings behave properly. In detail, we will see that non-minimal coupling allows to renormalize the Dirac equation even when torsion is taken into consideration and that in some type of non-minimally coupled models parity-oddness might be present even in the gravitational sector. In addition, we will show that in the presence of the considered non-minimal coupling, torsion is able to evade cosmological singularities as it can happen in the minimal coupling case and in some other non--minimally coupled theory. In the course of the paper, we shall consider a specific interaction as prototype to study this fermionic non-minimal coupling, but we will try to present results that do not depend on the actual structure of the non-minimal couplings by investigating alternative types of interaction.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A modified theory of gravity with torsion and its applications to cosmology and particle physics

          , (2013)
          In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German \textit{Eigenspinoren des LadungsKonjugationsOperators} designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field's self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Least-Order Torsion-Gravity for Chiral-Spinor Fields, induced Self-Interacting Potentials and Parity Conservation

            We will consider the most general least-order derivative action for the torsional completion of gravitational backgrounds filled with left-handed and right-handed semi-spinorial fields, accounting for all parity-even as well as parity-odd contributions; we will proceed by performing the customary analysis, decomposing torsion and substituting it in terms of the semi-spinorial density currents, in order to obtain the effective action with the torsionally-induced self-interacting potentials among the chiral fermionic fields: we shall see that the resulting effective non-linear potentials will turn eventually out to be parity conserving after all.
              Bookmark

              Author and article information

              Journal
              2014-04-23
              2014-07-10
              Article
              10.1103/PhysRevD.90.024012
              1404.5784
              a6f13655-0faa-403b-bcbc-7ec49bff9886

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              19 pages
              gr-qc hep-th

              General relativity & Quantum cosmology
              General relativity & Quantum cosmology

              Comments

              Comment on this article