68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of the Nociceptin/Orphanin FQ Receptor in Complex with a Peptide Mimetic

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Members of the Opioid Receptor (OR) family of G protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system where they play key roles in nociception and analgesia. Unlike the classical ORs, δ–OR, κ–OR, 1 and μ-OR, 2 which were delineated by pharmacological criteria in the 1970’s and 1980’s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, aka ORL-1) was discovered relatively recently via molecular cloning and characterization of an orphan GPCR 3 . Despite its high sequence similarity (~60%) with ORs, NOP has a strikingly distinct pharmacology 4, 5 . Despite high sequence similarity with classical opioid G protein-coupled receptor subtypes, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) has a distinct biological and pharmacological role, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. This study reports the crystal structure of human NOP solved in complex with the peptide mimetic antagonist Banyu Compound-24 (C-24), revealing atomic details of ligand-receptor recognition and selectivity. C-24 mimics the first four N-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to binding of these peptides. The X-ray structure also reveals substantial conformational differences in the pocket regions between NOP and the “classical” opioid receptors κ (Ref. 1) and μ (Ref. 2), which are likely due to a small number of residues that vary between the two receptors. The NOP/C-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.

          Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene splicing and mutagenesis by PCR-driven overlap extension.

            Extension of overlapping gene segments by PCR is a simple, versatile technique for site-directed mutagenesis and gene splicing. Initial PCRs generate overlapping gene segments that are then used as template DNA for another PCR to create a full-length product. Internal primers generate overlapping, complementary 3' ends on the intermediate segments and introduce nucleotide substitutions, insertions or deletions for site-directed mutagenesis, or for gene splicing, encode the nucleotides found at the junction of adjoining gene segments. Overlapping strands of these intermediate products hybridize at this 3' region in a subsequent PCR and are extended to generate the full-length product amplified by flanking primers that can include restriction enzyme sites for inserting the product into an expression vector for cloning purposes. The highly efficient generation of mutant or chimeric genes by this method can easily be accomplished with standard laboratory reagents in approximately 1 week.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of the μ-opioid receptor bound to a morphinan antagonist

              Summary Opium is one of the world’s oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many of their undesirable side effects (sedation, apnea and dependence) by binding to and activating the G-protein-coupled μ-opioid receptor (μOR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the μOR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most GPCRs published to date, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the μOR crystallizes as a two-fold symmetric dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                4 April 2012
                16 May 2012
                16 November 2012
                : 485
                : 7398
                : 395-399
                Affiliations
                [1 ]Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
                [2 ]National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27599, USA
                [3 ]Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, 44121 Ferrara, Italy
                [4 ]Department of Experimental and Clinical Medicine, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
                Author notes
                [* ]Address correspondence to: The Scripps Research Institute, 10550 North Torrey Pines Rd., GAC-1200, La Jolla, CA 92037. Tel.: 858-784-9416; Fax: 858-784-9483; stevens@ 123456scripps.edu
                [§]

                These authors contributed equally to this work

                Article
                NIHMS367689
                10.1038/nature11085
                3356928
                22596163
                a6fceafb-9f0f-409a-bd4a-ac65bc32603e

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: U54 GM094618-02 || GM
                Funded by: National Institute on Drug Abuse : NIDA
                Award ID: R01 DA027170-03 || DA
                Funded by: National Institute on Drug Abuse : NIDA
                Award ID: R01 DA017204-08 || DA
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: P50 GM073197-08 || GM
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article